Previous studies revealed an estradiol (E2)-dependent peak in brain activity, including neurosteroidogenesis and neurogenesis in the black porgy during the gonadal differentiation period. The brain-pituitary-gonadotropic axis is a key regulator of reproduction and may also be involved in gonadal differentiation, but its activity and potential role in black porgy during the gonadal differentiation period is still unknown. The present study analyzed the expression of regulatory factors involved in the gonadotropic axis at the time of gonadal differentiation (90, 120, 150 days after hatching [dah]) and subsequent testicular development (180, 210, 300 dah). In agreement with previous studies, expression of brain aromatase cyp19a1b peaked at 120 dah, and this was followed by a gradual increase during testicular development. The expression of gonadotropin subunits increased slightly but not significantly during gonadal differentiation and then increased significantly at 300 dah. In contrast, the expression of brain gnrh1 and pituitary gnrh receptor 1 (gnrhr1) exhibited a pattern with two peaks, the first at 120 dah, during the period of gonadal differentiation, and the second peak during testicular development. Gonad fshr and lhcgr increased during gonadal differentiation period with highest transcript level in prespawning season during testicular development. This suggests that the early activation of brain gnrh1, pituitary gnrhr1 and gths, and gonad gthrs might be involved in the control of gonadal differentiation. E2 treatment increased brain cyp19a1b expression at each sampling time, in agreement with previous studies in black porgy and other teleosts. E2 also significantly stimulated the expression of pituitary gonadotropin subunits at all sampling times, indicating potential E2-mediated steroid feedback. In contrast, no significant effect of E2 was observed on gnrh1. Moreover, treatment of AI or E2 had no statistically significant effect on brain gnrh1 transcription levels during gonadal differentiation. This indicated that the early peak of gnrh1 expression during the gonadal differentiation period is E2-independent and therefore not directly related to the E2-dependent peak in brain neurosteroidogenesis and neurogenesis also occurring during this period in black porgy. Both E2-independent and E2-dependent mechanisms are thus involved in the peak expression of various genes in the brain of black porgy at the time of gonadal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2019.05.008DOI Listing

Publication Analysis

Top Keywords

gonadal differentiation
48
black porgy
24
differentiation period
16
testicular development
16
gonadal
12
differentiation
12
previous studies
12
brain gnrh1
12
brain-pituitary-gonadotropic axis
8
e2-dependent peak
8

Similar Publications

In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).

View Article and Find Full Text PDF

Galectin-1 and galectin-3 in male reproduction - impact in health and disease.

Semin Immunopathol

January 2025

Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.

The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved.

View Article and Find Full Text PDF

Single-Cell Peptide Profiling to Distinguish Stickleback Ecotypes with Divergent Breeding Behavior.

J Proteome Res

January 2025

Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801, United States.

Variation in parenting behavior is widespread across the animal kingdom, both within and between species. There are two ecotypes of the three-spined stickleback fish () that exhibit dramatic differences in their paternal behavior. Males of the common ecotype are highly attentive fathers, tending to young from eggs to fry, while males of the white ecotype desert offspring as eggs.

View Article and Find Full Text PDF

Although sex determination is a fundamental process in vertebrate development, it is very plastic. Diverse genes became major sex determinants in teleost fishes. Deciphering how individual sex-determining genes orchestrate sex determination can reveal new actors in sexual development.

View Article and Find Full Text PDF

Introduction: Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!