Background: Macrophage phagocytosis constitutes an essential part of the host defence against microbes and the resolution of inflammation. Hyperglycaemia during sepsis is reported to reduce macrophage function, and thus, potentiate inflammatory deterioration. We investigated whether high-glucose concentrations augment lipopolysaccharide-induced reduction in macrophage phagocytosis via the endoplasmic stress-C/EBP homologous protein (CHOP) pathway using animal and laboratory investigations.
Methods: Peritoneal macrophages of artificially ventilated male Wistar rats, divided into four groups based on target blood glucose concentrations achieved by glucose administration with or without lipopolysaccharide, were obtained after 24 h. Human macrophages were also cultured in normal or high glucose with or without lipopolysaccharide exposure for 72 h. Changes in the phagocytic activity, intranuclear CHOP expression, and intracellular Akt phosphorylation status of macrophages were evaluated. These changes were also evaluated in human macrophages after genetic knock-down of CHOP by specific siRNA transfection or resolvin D2 treatment.
Results: Lipopolysaccharide impaired phagocytosis, increased intranuclear expression of CHOP, and inhibited Akt phosphorylation in both rat peritoneal and human macrophages. Hyperglycaemic glucose concentrations augmented these changes. Genetic knock-down of CHOP restored phagocytic ability and Akt phosphorylation in human macrophages. Furthermore, resolvin D2 co-incubation restored the inhibited phagocytosis and Akt phosphorylation along with the inhibition of intranuclear CHOP expression in human macrophages.
Conclusions: These findings imply that controlling endoplasmic reticulum stress might provide new strategies for restoring reduced macrophage phagocytosis in sepsis-induced hyperglycaemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bja.2019.03.040 | DOI Listing |
Nat Commun
January 2025
Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the "always-on" response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, 819-0395, Fukuoka, Japan. Electronic address:
Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu, 50411, Estonia.
In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
Objectives: GCA is a granulomatous vasculitis affecting large vessels, leading to intimal occlusion accompanied by the accumulation of myofibroblasts. Histopathologically, GCA is characterized by destruction of the tunica media and hypertrophy of the intima with invasion of activated CD4+ T cells, macrophages and multinucleated giant cells (MNGCs). Despite these well-defined histopathological features, the molecular pathology of GCA has largely remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!