Protective effects of SND1 in retinal photoreceptor cell damage induced by ionizing radiation.

Biochem Biophys Res Commun

Department of Ophthalmology, Peking University First Hospital, Beijing, China. Electronic address:

Published: June 2019

Staphylococcal nuclease and tudor domain containing 1 (SND1) has multiple functions in a variety of cellular processes. Here, we assessed the effects of SND1 in cellular DNA damage after ionizing radiation (IR). Knocking down SND1 in the mouse-derived photoreceptor 661 W cell line markedly inhibited cell proliferation and increased apoptosis after IR treatment. After DNA damage, SND1 induced Ataxia telangiectasia mutated kinase (ATM) signaling to launch DNA repair. Defects of SND1 were associated with missing response to DNA damage signal to cell cycle checkpoints or DNA repair. The current findings reveal SND1 as a new regulatory factor in DNA damage response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.04.189DOI Listing

Publication Analysis

Top Keywords

dna damage
16
effects snd1
8
ionizing radiation
8
dna repair
8
snd1
7
dna
6
damage
5
protective effects
4
snd1 retinal
4
retinal photoreceptor
4

Similar Publications

Engineered Cell Microenvironments: A Benchmark Tool for Radiobiology.

ACS Appl Mater Interfaces

January 2025

Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

The development of engineered cell microenvironments for fundamental cell mechanobiology, in vitro disease modeling, and tissue engineering applications increased exponentially during the last two decades. In such context, in vitro radiobiology is a field of research aiming at understanding the effects of ionizing radiation (e.g.

View Article and Find Full Text PDF

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.

View Article and Find Full Text PDF

Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!