Variation of efficiencies and limits of ultrasonication for practical algal bloom control in fields.

Ultrason Sonochem

Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450, USA. Electronic address:

Published: July 2019

Algal blooms are an increasing issue in managing water resources for drinking water production and recreational activities in many countries. Among various techniques, ultrasonication is known as a cost-effective method for control of harmful algal blooms (HABs) in relatively large area of water bodies. Most of engineering parameters for operating ultrasonication have been empirically determined based on laboratory scale tests, however, field or pilot tests in real environments are still rare. For field application, duration of ultrasonication is often on a monthly basis which is impractical for stream where there is flow and thus retention time is short. More realistic experimental approaches are required for practical applications of ultrasound. In this study, relatively low frequencies (36-175 kHz) of ultrasonication with low power intensity, less than 650 W, were tested for algal control in various pilot (100-750 L) and field (4 m) tests in a short duration (<20 min). Generally, rapid decline of sound pressure (Pa) of ultrasonication was observed with distance (80% decrease even with 0.5 m difference). In a pilot test (100 L), the highest algae reduction was achieved at 36 kHz with 0.003 W mL of power density within 10 min duration, but there was a noticeable increase in microcystin due to damaged algal cells by the low frequency of ultrasound. In a short-term operation without flow, distance from the ultrasound system was an important parameter for effective algae reduction, while longer exposure time ensured sufficient algae reduction. In a circulation pond (4 m) with flow, 108 kHz-450 W showed the greatest efficiency in algal control and approximately 50-90% algal cells reduction was observed at 36-175 kHz with less than 650 W power and 60 min duration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.03.007DOI Listing

Publication Analysis

Top Keywords

algal blooms
8
ultrasonication
5
variation efficiencies
4
efficiencies limits
4
limits ultrasonication
4
ultrasonication practical
4
algal
4
practical algal
4
algal bloom
4
bloom control
4

Similar Publications

Heterotrophic denitrification enhancement via effective organic matter degradation driven by suitable iron dosage in sediment.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:

The control of internal pollution was important throughout the restoration of the lake, especially the removal of sediment internal nitrogen. Experiments involving incubation were conducted in this study to investigate the effects of iron remediation on nitrogen in both water and sediment. Adding iron with varying dosage had different effects on the nutrients content and other properties of water and sediment in remediation.

View Article and Find Full Text PDF

Efficient management of soil nutrients is essential for optimizing crop production, ensuring sustainable agricultural practices, and addressing the challenges posed by population growth and environmental degradation. Smart agriculture, using advanced technologies, plays an important role in achieving these goals by enabling real-time monitoring and precision management of nutrients. In open-field soil cultivation, spatial variability in soil properties demands site-specific nutrient management and integration with variable-rate technology (VRT) to optimize fertilizer application, reduce nutrient losses, and enhance crop yields.

View Article and Find Full Text PDF

Watercress (), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil or gravel substrates. However, these methods have significant environmental impacts, such as promoting eutrophication due to excessive fertilizer use and contaminating water sources with pesticides.

View Article and Find Full Text PDF

Analysis on Bacterial Community of Algal Blooms Near Pingtan Island, China.

Biology (Basel)

January 2025

Fujian Key Laboratory of Special Marine Bio-Resources Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.

, known as a global red tide species, is a common red tide species found in Pingtan Island. To examine the bacterial community structure in different environments during the red tide period of on Pingtan Island, samples were collected from the Algal Bloom Area (ABA), Transition Area (TA), and Non-Algal Bloom Area (NBA) on 6 April 2022, and the environmental physicochemical factors and bacterial community were determined. The outbreak of red tide significantly impacted the water quality and bacterial community structure in the affected sea area.

View Article and Find Full Text PDF

Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!