Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid.

Ultrason Sonochem

Research Institute for Future Transport and Cities, Coventry University, Coventry CV1 2DS, United Kingdom; Faculty of Engineering, Environment and Computing, Coventry University, Coventry CV1 2JH, United Kingdom.

Published: July 2019

This paper describes a two-step method to prepare novel copper-methanol nanofluids capped with a short chain molecule, (3-Aminopropyl)trimethoxysilane (APTMS). Two commercial nanopowders were dispersed at various powers using a 20 kHz ultrasonic probe into solutions of methanol and the capping agent. Ultrasonic energy input was measured by calorimetry with z-average diameters, intensity and number size distributions recorded by a dynamic light scattering technique. The stability of the dispersion was monitored visually, and quantified by recording the zeta potential. Dispersions of the bare powder were used as a control. Absorption spectroscopy was used to confirm the presence of the capping agent. The thermal conductivities of 0 to 10% wt./vol. (1.1% vol.) dispersions of the capped copper-methanol nanofluid were determined using a C-Therm analyzer. Optimum ultrasonic de-agglomeration conditions gave dispersions with a z-average particle size of <200 nm and a PdI of <0.2. The capped particles showed good stability; up to six months in some instances, and an average zeta potential of +38 mV was recorded. The thermal conductivity of the nanofluid increased with concentration, and an enhancement of 9% over the base fluid was found at 10% wt./vol. (1.1% vol.). This innovative work has demonstrated the ultrasonic preparation and stability of copper nanoparticles protected with APTMS; a short chain molecule which binds to copper and prevents oxidation. The protected particles can enhance the thermal conductivity of methanol with no interference from the capping ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.02.028DOI Listing

Publication Analysis

Top Keywords

capped copper-methanol
8
copper-methanol nanofluid
8
capping agent
8
ultrasonic
4
ultrasonic preparation
4
preparation stability
4
stability thermal
4
thermal conductivity
4
conductivity capped
4
nanofluid paper
4

Similar Publications

Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid.

Ultrason Sonochem

July 2019

Research Institute for Future Transport and Cities, Coventry University, Coventry CV1 2DS, United Kingdom; Faculty of Engineering, Environment and Computing, Coventry University, Coventry CV1 2JH, United Kingdom.

This paper describes a two-step method to prepare novel copper-methanol nanofluids capped with a short chain molecule, (3-Aminopropyl)trimethoxysilane (APTMS). Two commercial nanopowders were dispersed at various powers using a 20 kHz ultrasonic probe into solutions of methanol and the capping agent. Ultrasonic energy input was measured by calorimetry with z-average diameters, intensity and number size distributions recorded by a dynamic light scattering technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!