Purpose: To evaluate the performance of a multi-parametric MRI (mp-MRI)-based radiomics signature for discriminating between clinically significant prostate cancer (csPCa) and insignificant PCa (ciPCa).
Materials And Methods: Two hundred and eighty patients with pathology-proven PCa were enrolled and were randomly divided into training and test cohorts. Eight hundred and nineteen radiomics features were extracted from mp-MRI for each patient. The minority group in the training cohort was balanced via the synthetic minority over-sampling technique (SMOTE) method. We used minimum-redundancy maximum-relevance (mRMR) selection and the LASSO algorithm for feature selection and radiomics signature building. The classification performance of the radiomics signature for csPCa and ciPCa was evaluated by receiver operating characteristic curve analysis in the training and test cohorts.
Results: Nine features were selected for the radiomics signature building. Significant differences in the radiomics signature existed between the csPCa and ciPCa groups in both the training and test cohorts (p < 0.01 for both). The AUC, sensitivity and specificity of the radiomics signature were 0.872 (95% CI: 0.823-0.921), 0.883, and 0.753, respectively, in the training cohort, and 0.823 (95% CI: 0.669-0.976), 0.841, and 0.727, respectively, in the test cohort.
Conclusion: Mp-MRI-based radiomics signature have the potential to noninvasively discriminate between csPCa and ciPCa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2019.03.010 | DOI Listing |
Front Surg
January 2025
Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: To accurately identify spread through air spaces (STAS) in clinical stage IA lung adenocarcinoma, our study developed a non-invasive and interpretable biomarker combining clinical and radiomics features using preoperative CT.
Methods: The study included a cohort of 1,325 lung adenocarcinoma patients from three centers, which was divided into four groups: a training cohort ( = 930), a testing cohort ( = 238), an external validation 1 cohort ( = 93), and 2 cohort ( = 64). We collected clinical characteristics and semantic features, and extracted radiomics features.
BMC Med
January 2025
Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.
Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.
Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.
Radiol Med
January 2025
Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
Purpose: Build machine learning (ML) models able to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on conventional and radiomic signatures extracted from baseline [F]FDG PET/CT.
Material And Methods: Primary tumor and the most significant lymph node metastasis were manually segmented in baseline [F]FDG PET/CT of 52 newly diagnosed BC patients. Clinical parameters, NAC and conventional semiquantitative PET parameters were collected.
Nuklearmedizin
January 2025
Department of Nuclear Medicine, Başakşehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey.
To determine the value of radiomics data extraction from baseline 18F FDG PET/CT in the prediction of tumor-infiltrating lymphocytes (TILs) among patients with primary breast cancer (BC).We retrospectively evaluated 74 patients who underwent baseline 18F FDG PET/CT scans for BC evaluation between October 2020 and April 2022. Radiomics data extraction resulted in a total of 131 radiomic features from primary tumors.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). : 236 single HCC patients were studied to establish a comprehensive prediction model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!