New approach for mapping and physiological test of silica nanoparticles accumulated in sweet basil (Ocimum basilicum) by LA-ICP-MS.

Anal Chim Acta

Department of Chemistry, Dankook University, Yongin-si, Gyeonggi-do, 448-701, South Korea. Electronic address:

Published: September 2019

Behavior of silica nanoparticles (SiNPs) in sweet basil was studied using laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) as an in situ monitoring tool. Although the use of SiNP for environmental applications is interesting, detailed studies in plants for distributional mapping and quantitative determination have been difficult because the detection of Si suffers from severe molecular interference and high background in ICP-MS. In this work, yttrium/fluorescein-isothiocyanate-doped silica nanoparticles (Y/FITC-doped SiNPs) synthesized in our lab were used to substitute for undoped SiNP, allowing the doped Y to be monitored instead of Si, while retaining the same surface properties. Based on this model, the physiological influence was studied by nourishing them with a nutrient solution spiked with the synthesized SiNPs and a co-pollutant, Cs ion. Mapping images obtained by LA-ICP-MS showed distinct accumulation patterns associated with exposure. For example, Cs was distributed widely over the leaves, whereas SiNPs were concentrated in specific regions such as main veins, leaf margins, and tips. Furthermore, the possible effect of SiNP and Cs on the photochemical reaction was confirmed through monitoring the change of the concentration of chlorophyll and carotenoid and the superoxide dismutase (SOD) activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.04.033DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
12
sweet basil
8
approach mapping
4
mapping physiological
4
physiological test
4
test silica
4
nanoparticles accumulated
4
accumulated sweet
4
basil ocimum
4
ocimum basilicum
4

Similar Publications

The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.

View Article and Find Full Text PDF

Boehmite nanoparticles and NaY nanozeolite were synthesized by co-precipitation and hydrothermal methods, respectively, and characterized by XRD, FT-IR, TG-DTA, BET, and SEM techniques. XRD and BET analyses demonstrated the formation of boehmite nanoparticles with a surface area of 350 m/g and high crystallinity NaY nanozeolite with a surface area of 957 m/g. In order to evaluate the effect of the content of the mesoporous boehmite nanoparticles on the catalytic performance of the Residue Fluid Catalytic Cracking (RFCC) catalyst, alumina active matrix-based and silica inactive matrix-based catalysts were prepared.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.

View Article and Find Full Text PDF

Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).

View Article and Find Full Text PDF

Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!