Influenza defective interfering (DI) particles are replication-incompetent viruses carrying large internal deletion in the genome. The loss of essential genetic information causes abortive viral replication, which can be rescued by co-infection with a helper virus that possesses an intact genome. Despite reports of DI particles present in seasonal influenza A H1N1 infections, their existence in human infections by the avian influenza A viruses, such as H7N9, has not been studied. Here we report the ubiquitous presence of DI-RNAs in nasopharyngeal aspirates of H7N9-infected patients. Single Molecule Real Time (SMRT) sequencing was first applied and long-read sequencing analysis showed that a variety of H7N9 DI-RNA species were present in the patient samples and human bronchial epithelial cells. In several abundantly expressed DI-RNA species, long overlapping sequences have been identified around at the breakpoint region and the other side of deleted region. Influenza DI-RNA is known as a defective viral RNA with single large internal deletion. Beneficial to the long-read property of SMRT sequencing, double and triple internal deletions were identified in half of the DI-RNA species. In addition, we examined the expression of DI-RNAs in mice infected with sublethal dose of H7N9 virus at different time points. Interestingly, DI-RNAs were abundantly expressed as early as day 2 post-infection. Taken together, we reveal the diversity and characteristics of DI-RNAs found in H7N9-infected patients, cells and animals. Further investigations on this overwhelming generation of DI-RNA may provide important insights into the understanding of H7N9 viral replication and pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534226 | PMC |
http://dx.doi.org/10.1080/22221751.2019.1611346 | DOI Listing |
Gene
December 2024
Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001, India. Electronic address:
In recent years, third-generation sequencing (TGS) technologies have transformed genomics and transcriptomics research, providing novel opportunities for significant discoveries. The long-read sequencing platforms, with their unique advantages over next-generation sequencing (NGS), including a definitive protocol, reduced operational time, and real-time sequencing, possess the potential to transform plant genomics. TGS optimizes and enhances the efficiency of data analysis by removing the necessity for time-consuming assembly tools.
View Article and Find Full Text PDFA major challenge in epigenetics is uncovering the dynamic distribution of nucleosomes and other DNA-binding proteins, which plays a crucial role in regulating cellular functions. Established approaches such as ATAC-seq, ChIP-seq, and CUT&RUN provide valuable insights but are limited by the ensemble nature of their data, masking the cellular and molecular heterogeneity that is often functionally significant. Recently, long-read sequencing technologies, particularly Single Molecule, Real-Time (SMRT/PacBio) sequencing, have introduced transformative capabilities, such as N6-methyladenine (6mA) footprinting.
View Article and Find Full Text PDFHemoglobin
December 2024
Department of Clinical Laboratory, Yulin Women and Children Health Care Hospital, Yulin, Guangxi Zhuang Autonomous Region, China.
In southern China, α-thalassemia is the most prevalent hereditary monogenic disorder, and deletion variants are the predominant form. Conventional thalassemia diagnosis techniques are numerous, however they are all limited in their ability to detect rare deletions. Here, we discuss a family who sought genetic counseling during their fourth pregnancy after experiencing Hb Bart's hydrops fetalis in two of their previous pregnancies.
View Article and Find Full Text PDFPlants (Basel)
November 2024
College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
Hairy vetch ( Roth) and smooth vetch ( Roth var. ) are important cover crops and legume forage with great economic and ecological values. Due to the large and highly heterozygous genome, full-length transcriptome reconstruction is a cost-effective route to mining their genetic resources.
View Article and Find Full Text PDFInsect Mol Biol
December 2024
Department of Forensic Medicine, Soochow University, Suzhou, China.
Dermestes frischii Kugelann, 1792 is a storage pest worldwide, and is important for estimating the postmortem interval in forensic entomology. However, because of the lack of transcriptome and genome resources, population genetics and biological control studies on D. frischii have been hindered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!