A highly potent pan-Janus kinase (JAK) inhibitor with excellent kinome selectivity was developed for topical delivery to treat severe asthma. This poorly soluble drug discovery candidate, iJAK-001, is expected to exhibit long duration of JAK/STAT pathway inhibition at low doses in asthmatics because of depot effect after dry powder inhalation. Human dose projection for inhaled molecules with low aqueous solubility remains to be a daunting challenge because of several limitations: (1) bioanalytical measurement of dissolved fraction after inhalation of solid particles is uncertain; (2) distribution of these particles is not homogenous in the lung; (3) solubility measurements to estimate fraction dissolved may not be a reflection of local surface lung concentration; (4) lack of a surrogate biomarker of lung target engagement, and (5) invasive procedure needed to sample human lung tissue in the clinic. We leveraged , , and tools preclinically and found significant differences in lung to plasma partition ratio when iJAK-001 was given intravenously (IV) or intratracheally in a solution-based formulation versus that in suspension, as well as pharmacodynamic response in preclinical asthma models when delivered systemically via IV infusion versus inhaled. The combined results from above suggest that caution must be exercised using either lung or plasma exposure for human dose projection. Instead, using the local inhibitor concentration estimate based on delivery efficiency, dose, fraction absorbed, and rate of absorption normalized by lung (cardiac) blood flow may be more appropriate for dose projection.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jamp.2018.1492DOI Listing

Publication Analysis

Top Keywords

dose projection
16
human dose
12
fraction dissolved
8
lung plasma
8
lung
7
dose
5
estimation fraction
4
dissolved intratracheal
4
intratracheal delivery
4
delivery potent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!