Background: Recent evidence suggests that 2-week treatment with the non-psychotomimetic cannabinoid cannabidivarin (CBDV) could be beneficial towards neurological and social deficits in early symptomatic mutant mice, a model of Rett syndrome (RTT).

Aim: The aim of this study was to provide further insights into the efficacy of CBDV in -null mice using a lifelong treatment schedule (from 4 to 9 weeks of age) to evaluate its effect on recognition memory and neurological defects in both early and advanced stages of the phenotype progression.

Methods: CBDV 0.2, 2, 20 and 200 mg/kg/day was administered to -null mice from 4 to 9 weeks of age. Cognitive and neurological defects were monitored during the whole treatment schedule. Biochemical analyses were carried out in brain lysates from 9-week-old wild-type and knockout mice to evaluate brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) levels as well as components of the endocannabinoid system.

Results: CBDV rescues recognition memory deficits in mutant mice and delays the appearance of neurological defects. At the biochemical level, it normalizes BDNF/IGF1 levels and the defective PI3K/AKT/mTOR pathway in mutant mice at an advanced stage of the disease. deletion upregulates CB1 and CB2 receptor levels in the brain and these changes are restored after CBDV treatment.

Conclusions: CBDV administration exerts an enduring rescue of memory deficits in mutant mice, an effect that is associated with the normalization of BDNF, IGF-1 and rpS6 phosphorylation levels as well as CB1 and CB2 receptor expression. CBDV delays neurological defects but this effect is only transient.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0269881119844184DOI Listing

Publication Analysis

Top Keywords

mutant mice
20
neurological defects
16
delays neurological
8
mice
8
-null mice
8
treatment schedule
8
weeks age
8
recognition memory
8
levels well
8
memory deficits
8

Similar Publications

NEDD4-Mediated GSNOR Degradation Aggravates Cardiac Hypertrophy and Dysfunction.

Circ Res

January 2025

Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).

Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.

View Article and Find Full Text PDF

Signal Transduction Pathway Mediating Carotid Body Dependent Sympathetic Activation and Hypertension by Chronic Intermittent Hypoxia.

Function (Oxf)

January 2025

Institute for Integrative Physiology, Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, IL. 60637, USA.

Patients with obstructive sleep apnea (OSA) experience chronic intermittent hypoxia (CIH). OSA patients and CIH-treated rodents exhibit overactive sympathetic nervous system and hypertension, mediated through hyperactive carotid body (CB) chemoreflex. Activation of olfactory receptor 78 (Olfr78) by hydrogen sulfide (H2S) is implicated in CB activation and sympathetic nerve responses to CIH, but the downstream signaling pathways remain unknown.

View Article and Find Full Text PDF

Mutations of the MECP2 gene lead to Rett syndrome (RTT), a rare developmental disease causing severe intellectual and physical disability. How the loss or defective function of MeCP2 mediates RTT is still poorly understood. MeCP2 is a global gene expression regulator, acting at transcriptional and post-transcriptional levels.

View Article and Find Full Text PDF

The spatial role of M1 and M2 tumor-associated macrophages (M1/M2 TAMs) in precision medicine remains unclear. EGFR and TP53 are among the most frequently mutated genes in lung adenocarcinoma. We characterized the mutation status and density of M1/M2 TAMs within tumor islets and stroma in 117 lung adenocarcinomas using next-generation sequencing and immunohistochemistry, respectively.

View Article and Find Full Text PDF

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!