A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermally versus Chemically Denatured Protein States. | LitMetric

Thermally versus Chemically Denatured Protein States.

Biochemistry

Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras, Chennai 600036 , India.

Published: May 2019

Protein unfolding thermodynamic parameters are conventionally extracted from equilibrium thermal and chemical denaturation experiments. Despite decades of work, the degree of structure and the compactness of denatured states populated in these experiments are still open questions. Here, building on previous works, we show that thermally and chemically denatured protein states are distinct from the viewpoint of far-ultraviolet circular dichroism experiments that report on the local conformational status of peptide bonds. The differences identified are independent of protein length, structural class, or experimental conditions, highlighting the presence of two sub-ensembles within the denatured states. The sub-ensembles, U and U for thermally induced and denaturant-induced unfolded states, respectively, can exclusively exchange populations as a function of temperature at high chemical denaturant concentrations. Empirical analysis suggests that chemically denatured states are ∼50% more expanded than the thermally denatured chains of the same protein. Our observations hint that the strength of protein backbone-backbone interactions and identity versus backbone-solvent/co-solvent interactions determine the conformational distributions. We discuss the implications for protein folding mechanisms, the heterogeneity in relaxation rates, and folding diffusion coefficients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542680PMC
http://dx.doi.org/10.1021/acs.biochem.9b00089DOI Listing

Publication Analysis

Top Keywords

chemically denatured
12
denatured states
12
denatured protein
8
protein states
8
protein
7
denatured
6
states
6
thermally
4
thermally versus
4
versus chemically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!