Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The strong synergistic adsorption of mixed polymer/surfactant (P/S) systems at the oil/water interface shows promise for applications such as oil remediation and emulsion stabilization, especially with respect to the formation of tunable mesoscopic multilayers. There is some evidence that a combination of dodecyltrimethylammonium bromide (DTAB) and sodium poly(styrenesulfonate) (PSS) exhibits the adsorption of a secondary P/S layer, though the structure of this layer has long eluded researchers. The focus of this study is to determine whether the DTAB-assisted adsorption of PSS at the oil/water interface occurs as a single layer or with subsequent multilayers. The study presented uses vibrational sum-frequency spectroscopy and interfacial tensiometry to determine the degree of PSS adsorption and orientation of its charged groups relative to the interface at three representative concentrations of DTAB. At low and intermediate DTAB concentrations, a single mixed DTAB/PSS monolayer adsorbs at the oil/water interface. No PSS adsorbs above the system critical micelle concentration. The interfacial charge is found to be similar to that of P/S complexes solvated in the aqueous solution. The surface adsorbate and P/S complexes in the bulk both exhibit a charge inversion at around the same DTAB concentration. This study demonstrates the importance of techniques which can differentiate between coadsorbing species and calls into question current models of P/S adsorption at an oil/water interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b00873 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!