In this study, a water-silicone oil biphasic system was developed to enhance the biodegradation of monochlorobenzene (CB) by LW26. Compared to the single phase, the biphasic system with a suitable silicone oil fraction (/) of 20% allowed a 2.5-fold increase in the maximum tolerated CB concentration. The CB inhibition on LW26 was reduced in the presence of silicone oil, and the electron transport system activity was maintained at high levels even under high CB stress. Adhesion of cells to the water-oil interface at the water side was observed using confocal laser scanning microscopy. Nearly 75% of cells accumulated on the interface, implying that another interfacial substrate uptake pathway prevailed besides that initiated by cells in the aqueous phase. The 8-fold increase in cell surface hydrophobicity upon the addition of 20% () silicone oil showed that silicone oil modified the surface characteristics of LW26. The protein/polysaccharide ratio of extracellular polymeric substances (EPS) from LW26 presented a 3-fold enhancement. These results suggested that silicone oil induced the increase in the protein content of EPS and rendered cells hydrophobic. The resulting hydrophobic cells could adhere on the water-oil interface, improving the mass transfer by direct CB uptake from silicone oil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539085PMC
http://dx.doi.org/10.3390/ijerph16091629DOI Listing

Publication Analysis

Top Keywords

silicone oil
24
biphasic system
12
oil
8
water-silicone oil
8
oil biphasic
8
water-oil interface
8
silicone
6
cells
5
enhancing chlorobenzene
4
chlorobenzene biodegradation
4

Similar Publications

Rhegmatogenous retinal detachment (RRD) is a severe condition that may lead to permanent vision loss if untreated. Pars plana vitrectomy (PPV) has become a preferred surgical intervention, particularly in complex cases. Objective: Retinal displacement (RD) following PPV for RRD can lead to visual distortions and can negatively impact patient quality of life.

View Article and Find Full Text PDF

: Rhegmatogenous retinal detachment (RRD) is a potentially blinding retinal disorder. RRD in the first eye is a well-recognized risk factor for bilateral RRD since risk factors that predispose to RRD affect both eyes. In this study, we assess the presenting factors that predispose individuals to bilateral RRD and evaluate the role of prophylactic retinopexy in preventing fellow-eye RRD.

View Article and Find Full Text PDF

Purpose: Current treatments for retinoblastoma facilitate globe salvage but can result in vitreoretinal disorders that may require surgery. There is controversy on surgical approaches in eyes with retinoblastoma. Here we describe a transcorneal vitrectomy approach that avoids the use of chemotherapy or cryotherapy.

View Article and Find Full Text PDF

Background: Intracanal medicament (ICM) eliminates remaining bacteria and their toxins that were not removed by chemomechanical preparation during endodontic treatment.

Aim: The aim of this study was to compare and evaluate the removal of ozonated oil-based, silicone oil-based, and distilled water-based ICM with two calcium chelators, i.e.

View Article and Find Full Text PDF

Engineering Wettability Transitions on Laser-Textured Shark Skin-Inspired Surfaces via Chemical Post-Processing Techniques.

Micromachines (Basel)

November 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!