Open-pit mining activities for minerals and metals have left an international legacy of highly polluted soils and degraded landscapes. Reforestation is usually supposed to restore soil fertility and ecosystem services, and therefore to remediate and recover polluted sites. However, our understanding of the effects of tree species and recovery time on the restoration of abiotic and biotic soil properties remains scarce. In this study, the effects of a series of restoration chronosequence (unrestored control, 10-year, 20-year, and natural forest) and plantation types (nitrogen-fixing broad-leaved Alnus nepalensis and coniferous Cupressus torulosa monocultures, as well as their mixed plantation) on soil physicochemical and biological properties were explored in a phosphate mine. Our results showed that soil quality index (SQI), which integrates important soil physical, chemical, and biological parameters including bulk density, soil organic carbon and microbial biomass, could provide valuable information about soil health. The average SQI values of 20-year plantations were 1.55 times of 10-year plantations, and the mixed plantation was 1.13 and 1.27 times of A. nepalensis and C. torulosa monoculture, respectively. Thus, recovery time, as well as plantation type, were the main determinants of the alterations in key soil conditions during the phosphate mining restoration. At the beginning restoration (10 years), A. nepalensis monoculture performed better than C. torulosa, providing an efficient restoration strategy for early revegetation. The mixed plantation of C. torulosa and A. nepalensis showed the higher moisture and soil organic carbon than did the monocultures, especially after 20 years of revegetation. Hence, our findings address a helpful guideline for selection of tree species and plantation practices, thereby aiding in long-term success of restoration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2019.05.001 | DOI Listing |
Curr Microbiol
January 2025
Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, 3460000, Chile.
In the present study, the taxonomic position of Salinisphaera halophila (NZ_AYKF00000000) and Salinisphaera orenii (NZ_AYKH00000000) was re-evaluated. In addition, their metabolic potentials and mechanisms for mitigating stress conditions were determined. Comparisons of 16S rRNA gene sequences, analysis of the phylogenetic tree, phylogenomic tree, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) values were conducted.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
College of Pharmacy, Dali University, Dali, China.
, a significant folk medicinal plant, is utilized to treat a variety of ailments. In this study, we reported the complete chloroplast genome sequence of this species. The length of the complete chloroplast genome was 155,810 bp, included a pair of inverted repeat (IR) regions (26,340 bp), a large single-copy region (LSC, 84,853 bp), and a small single-copy region (SSC, 18,277 bp).
View Article and Find Full Text PDFData Brief
February 2025
Politeknik Negeri Lampung, Indonesia.
Cloves (), a tree in the Myrtaceae family, are indigenous to the Maluku Islands in Indonesia and are widely utilized as a spice. Essential oils are commonly extracted from clove leaves, flower buds, and stalks. However, due to supply constraints, other clove species, notably , are sometimes used as substitutes, leading to lower-grade essential oils.
View Article and Find Full Text PDFEcol Evol
January 2025
Centro de Investigaciones sobre Desertificación CIDE CSIC-UVEG-GV Valencia Spain.
The spatial distribution pattern of plant species is frequently driven by a combination of biotic and abiotic factors that jointly influence the arrival, establishment, and reproduction of plants. Comparing the spatial distribution of a target plant species in different populations represents a robust approach to identify the underlying mechanisms. We mapped all reproductive individuals of the Iberian pear () in five plots (1.
View Article and Find Full Text PDFEffective conservation of rare species necessitates the identification of critical habitats and their specific features that influence species occurrence. This study focused on smalltooth sawfish (), a critically endangered elasmobranch, to explore how predictive spatial modeling can enhance conservation efforts. By leveraging long-term occurrence and relative abundance data from scientific gillnet surveys, along with in situ environmental data, we used boosted regression trees (BRT) to pinpoint key habitat features essential for juvenile sawfish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!