A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biosynthesis of β-d-glucan‑gold nanoparticles, cytotoxicity and oxidative stress in mouse splenocytes. | LitMetric

Biosynthesis of β-d-glucan‑gold nanoparticles, cytotoxicity and oxidative stress in mouse splenocytes.

Int J Biol Macromol

Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico. Electronic address:

Published: August 2019

This study reports biosynthesis of gold-nanoparticles (AuNPs) by using β-d-glucans isolated from the yeast Yarrowia lypolitica D1. β-d-glucans serve as reducing and stabilizing mediators that induce the formation of AuNPs on the outer surface of the own β-d-glucan. The systems were physicochemically characterized by ultraviolet visible (UV-Vis) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and dynamic light scattering (DLS) analyses. The results revealed the generation of AuNPs with quasi-spherical shape or large one dimension (1D) gold-nanostructures (AuNSs) depending on the HAuCl concentration. A cytotoxic study was assessed in mouse splenocytes. Contrary to that expected, important cytotoxicity was found in all β-d-gluc+AuNPs systems by an oxidative stress increase. This study discusses the cytotoxic mechanism, suggesting that the resulting β-d-gluc+AuNPs systems may not be candidates for the formulation of immunostimulants or nanocarriers for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.05.065DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
mouse splenocytes
8
β-d-gluc+aunps systems
8
biosynthesis β-d-glucan‑gold
4
β-d-glucan‑gold nanoparticles
4
nanoparticles cytotoxicity
4
cytotoxicity oxidative
4
stress mouse
4
splenocytes study
4
study reports
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!