We previously reported that transforming growth factor-β1 (TGF-β1) stimulated the sustained and prolonged expression of activating transcription factor 3 (ATF3) in highly metastatic and invasive human breast cancer cells (MDA-MB231), in contrast to normal human mammary epithelial cells. However, the mechanism behind the stability of ATF3 expression is not yet known. Based on an in silico approach with co-immunoprecipitation and mass spectrometric analyses, we identified a number of proteins, including Smad4, that interacted with ATF3 after TGF-β1 treatment in MDA-MB231 cells. The knockdown of Smad4 using the siRNA technique resulted in a significant loss of ATF3 expression in these cells. Chromatin immunoprecipitation was then used to identify the formation of an ATF3 and Smad4 complex at the matrix metalloproteinase 13 (MMP13) promoter upon TGF-β1-treatment, and the knockdown of Smad4 decreased MMP13 promoter activity in MDA-MB231 cells. Our findings indicate that Smad4 is a pre-requisite for providing stability to ATF3 via TGF-β1 in human breast cancer cells. The targeting of Smad4 may thus provide the sustainable loss of ATF3 expression that is needed to control breast cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.05.062 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China.
Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.
View Article and Find Full Text PDFInt J Clin Oncol
January 2025
Translational Research Support Section, National Cancer Center Hospital East, Chiba, Japan.
Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Cell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Istanbul University, Faculty of Science, Department of Biology, Istanbul, Türkiye.
In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!