AI Article Synopsis

  • The study explores how the protein TGF-β1 affects the long-term expression of ATF3 in invasive breast cancer cells but not in normal cells.
  • Researchers identified Smad4, among other proteins, as critical for maintaining ATF3 expression after TGF-β1 treatment.
  • Knockdown of Smad4 led to decreased ATF3 levels and MMP13 promoter activity, suggesting targeting Smad4 could help control breast cancer progression by reducing ATF3 stability.

Article Abstract

We previously reported that transforming growth factor-β1 (TGF-β1) stimulated the sustained and prolonged expression of activating transcription factor 3 (ATF3) in highly metastatic and invasive human breast cancer cells (MDA-MB231), in contrast to normal human mammary epithelial cells. However, the mechanism behind the stability of ATF3 expression is not yet known. Based on an in silico approach with co-immunoprecipitation and mass spectrometric analyses, we identified a number of proteins, including Smad4, that interacted with ATF3 after TGF-β1 treatment in MDA-MB231 cells. The knockdown of Smad4 using the siRNA technique resulted in a significant loss of ATF3 expression in these cells. Chromatin immunoprecipitation was then used to identify the formation of an ATF3 and Smad4 complex at the matrix metalloproteinase 13 (MMP13) promoter upon TGF-β1-treatment, and the knockdown of Smad4 decreased MMP13 promoter activity in MDA-MB231 cells. Our findings indicate that Smad4 is a pre-requisite for providing stability to ATF3 via TGF-β1 in human breast cancer cells. The targeting of Smad4 may thus provide the sustainable loss of ATF3 expression that is needed to control breast cancer progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.05.062DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
human breast
12
cancer cells
12
atf3 expression
12
matrix metalloproteinase
8
stability atf3
8
atf3 tgf-β1
8
mda-mb231 cells
8
knockdown smad4
8
loss atf3
8

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how changes in the Ki67 biomarker before and after neoadjuvant chemotherapy (NACT) affect survival in patients with triple-negative breast cancer (TNBC).
  • Among 1,777 TNBC patients analyzed, most showed a decrease in tumor size and Ki67 levels after NACT, though many had no change or experienced treatment discontinuation.
  • Patients with unchanged Ki67 had significantly worse overall and disease-specific survival compared to those with decreased Ki67, emphasizing the need for personalized treatment strategies based on ongoing monitoring of this biomarker.
View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!