Cellular Vehicles Based on Neutrophils Enable Targeting of Atherosclerosis.

Mol Pharm

State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University, No. 24 Tongjiaxiang , Nanjing 210009 , China.

Published: July 2019

Given the multiple interactions between neutrophils (NEs) and atherosclerosis (AS), in this study, we exploited NEs as cellular vehicles loaded with cationic liposomes for actively targeting atherosclerotic sites. The cellular vehicles based on NEs possess efficient internalization of cationic liposomes and sensitive response to the chemotaxis of atherosclerotic inflammatory cells, which ultimately realize the targeted delivery of the cargos into the target cells in vitro. Moreover, these effects also translated to significant enhancement of the accumulation of NEs' cargos into the atherosclerotic plaque in vivo after administering NE vehicles to the AS animal model. Consequently, cellular vehicles based on NEs could be a novel strategy for targeted delivery of payloads into atherosclerotic plaque, which would facilitate theranostics for AS and the development of anti-AS drugs to manage the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00342DOI Listing

Publication Analysis

Top Keywords

cellular vehicles
16
vehicles based
12
cationic liposomes
8
based nes
8
targeted delivery
8
atherosclerotic plaque
8
cellular
4
based neutrophils
4
neutrophils enable
4
enable targeting
4

Similar Publications

Background: Targeting glutamine metabolism has emerged as a promising strategy in cancer therapy. However, several barriers, such as anti-tumor efficacy, drug toxicity, and safety, remain to be overcome to achieve clinical utility. Prior preclinical studies had generated encouraging data showing promises of cancer metabolism targeting drugs, although most were performed on immune-deficient murine models.

View Article and Find Full Text PDF

Background: Metastasis is the leading cause of breast cancer (BC) death, and tumor cells must migrate and invade to metastasize. BC cells that express the pro-metastatic actin regulatory protein MenaINV have an enhanced ability to migrate and intravasate within the primary tumor and extravasate at secondary sites. Though chemotherapy improves patient survival, treatment with paclitaxel leads to upregulation of MenaINV and an increase in metastasis in mice.

View Article and Find Full Text PDF

Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.

View Article and Find Full Text PDF

Objectives: Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of infants, predominantly in female and preterm neonates. Propranolol is the mainstay of treatment for IH. Given the short half-life of propranolol regarding β-adrenergic receptor inhibition as well as its side effects, propranolol is administered to infants 2-3 times daily with 1 mg/kg/dose.

View Article and Find Full Text PDF

Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!