This work reports on an extensive assessment of the performance of a wide palette of density functional approximations in predicting the (high-order) electric properties of hydrogen-bonded complexes. To this end, we compute the electronic and vibrational contributions to the electric polarizability and the first and second hyperpolarizabilities, using the CCSD(T)/aug-cc-pVTZ level of theory as reference. For all the studied properties, the average absolute errors below 20% can only be obtained using the CAM-B3LYP functional, while LC-BLYP and MN15 are shown to be only slightly less accurate (average absolute errors not exceeding 30%). Among Minnesota density functionals, i.e., M06, M06-2X, and MN15, we only recommend the latter one, which quite accurately predicts the electronic and vibrational (hyper)polarizabilities. We also analyze the optimal tuning of the range-separation parameter μ for the LC-BLYP functional, finding that this approach does not bring any systematic improvement in the predictions of electronic and vibrational (hyper)polarizabilities and the accuracy of computed properties is largely system-dependent. Finally, we report huge errors in predicting the vibrational second hyperpolarizability by ωB97X, M06, and M06-2X functionals. Based on the explicit evaluation of anharmonic terms contributing to the second hyperpolarizability, this failure is traced down to a poor determination of third- and fourth-order energy derivatives with respect to normal modes. These results reveal serious flaws of some density functional approximations and suggest caution in selecting the appropriate functional to calculate not only electronic and vibrational (hyper)polarizabilities but also other molecular properties that contain vibrational anharmonic contributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.9b00139 | DOI Listing |
Ultrasound Med Biol
January 2025
Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand. Electronic address:
Objective: This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation.
Methods: The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis.
Phys Chem Chem Phys
January 2025
School of Physics and Electronics, Hunan University, Changsha 410082, China.
Two-dimensional (2D) Janus structures with the breaking of out-of-plane mirror symmetry can induce many interesting physical phenomena, and have attracted widespread attention. Herein, we propose a MoPS monolayer with mirror asymmetry, identified by first-principles structural search calculations, which demonstrates high thermodynamic and dynamic stability. Our findings reveal that Mo 4d-orbitals dominate the metallicity, significantly enhancing the density of states near the Fermi level due to Van Hove singularities (VHSs), leading to the existence of phonon-mediated superconductivity.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Department of Electrical Engineering (ESAT-MNS), KU Leuven, Belgium.
The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, University of St Andrews, North Haugh, Fife, St Andrews KY16 9ST, United Kingdom.
Two synchrotron-based studies on 4H-pyran-4-thione, photoelectron spectroscopy and vacuum ultraviolet (VUV) absorption spectra were performed. A highly resolved structure was observed in the photoelectron spectrum (PES), in contrast to an earlier PES study, where little structure was observed. The sequence of ionic states was determined using configuration interaction and coupled cluster methods.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Echosens, Paris, France.
Objective: Although FibroScan (FS), based on Vibration-Controlled Transient Elastography (VCTE), is a widely used non-invasive device for assessing liver fibrosis and steatosis, its current standard-VCTE examination remains timely and difficult on patients with obesity. The Guided-VCTE examination uses continuous shear waves to locate the liver by providing a real-time predictive indicator for shear wave propagation and uses shear wave maps averaging to increase the signal-to-noise ratio in difficult to assess patients. We aimed to evaluate the effectiveness of the new indicator, as well as compare examination times and success rates with both standard-VCTE and Guided-VCTE examinations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!