Are calcium oxalate crystals a dynamic calcium store in plants?

New Phytol

Plant Secretion & Reproduction (PlantSeR) Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.

Published: September 2019

AI Article Synopsis

Article Abstract

Calcium oxalate (CaOx) crystals occur as intravacuolar deposits in most angiosperm species. Different functions have been attributed to these crystals, some of which are very speculative, until now. Calcium regulation and homeostasis seem to be the most widespread function of CaOx crystals. Being rich in calcium, these crystals constitute a reserve of calcium for plants. However, despite being bioavailable, this reserve is functional in just a few situations due to the low mobility of calcium for phloem translocation. Therefore, CaOx crystals as a calcium reserve is a paradox because in most cases the reserve cannot be used. However, in most plants, these crystals occur in organs or tissues that will be discarded, which allows the elimination of excess calcium. This suggests that CaOx crystals have a functional role in excess calcium excretion. There is some evidence that, for calcium, this excretory function is relevant for plants since they lack an excretory system dedicated to discarding solid wastes, such as calcium salts.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15912DOI Listing

Publication Analysis

Top Keywords

caox crystals
16
calcium
12
calcium oxalate
8
crystals
8
crystals occur
8
excess calcium
8
oxalate crystals
4
crystals dynamic
4
dynamic calcium
4
calcium store
4

Similar Publications

The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.

View Article and Find Full Text PDF

Calcium oxalate crystals in cacao trees and their interactions with cadmium.

Plant Physiol Biochem

January 2025

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France.

Cadmium (Cd) concentrations in cacao beans from Latin America often exceed limits for trading. A better understanding of the mechanisms of Cd accumulation in Theobroma cacao L. trees is necessary to advance mitigation strategies.

View Article and Find Full Text PDF

Sulfated Polysaccharides Inhibit CaOx Stone Formation by Inhibiting Calcium Oxalate Crystallization, Cellular Inflammation, and Crystal Adhesion.

J Agric Food Chem

January 2025

Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Hyperoxaluria can easily induce calcium oxalate (CaOx) crystals and cause cell damage, thereby increasing the risk of kidney stone formation. In this study, three sulfated polysaccharides (PSPs) were obtained by the sulfur trioxide-pyridine method. The antioxidant activity of PSPs and the inhibitory effects of PSPs on CaOx crystallization, cellular oxidative damage, and cellular inflammation were explored in vitro, and PSPs were used to treat hyperoxaluria-induced crystallization model mice in order to validate the stone-preventive effect of PSPs in vivo.

View Article and Find Full Text PDF

The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.

View Article and Find Full Text PDF

The SIRT6 allosteric activator MDL-800 suppresses calcium oxalate nephrocalcinosis by alleviating inflammatory and renal damage.

Int Immunopharmacol

January 2025

Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China. Electronic address:

Article Synopsis
  • Kidney stones are primarily made of calcium oxalate and can cause inflammation and damage in kidney cells, leading to a condition known as CaOx nephrocalcinosis.
  • The study tested a new drug, MDL-800, which acts as an allosteric agonist for Sirtuin 6 (SIRT6), showing it can reduce kidney cell damage and inflammation caused by calcium oxalate crystals in both cell cultures and animal models.
  • MDL-800 works by decreasing levels of inflammatory proteins and enhancing SIRT6's function, offering a potential new treatment approach for kidney damage linked to calcium oxalate stones.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!