How altered metabolism contributes to chemotherapy resistance in cancer cells remains unclear. Through a metabolism-related kinome RNAi screen, we identified inositol-trisphosphate 3-kinase B (ITPKB) as a critical enzyme that contributes to cisplatin-resistant tumor growth. We demonstrated that inositol 1,3,4,5-tetrakisphosphate (IP4), the product of ITPKB, plays a critical role in redox homeostasis upon cisplatin exposure by reducing cisplatin-induced ROS through inhibition of a ROS-generating enzyme, NADPH oxidase 4 (NOX4), which promotes cisplatin-resistant tumor growth. Mechanistically, we identified that IP4 competes with the NOX4 cofactor NADPH for binding and consequently inhibits NOX4. Targeting ITPKB with shRNA or its small-molecule inhibitor resulted in attenuation of NOX4 activity, imbalanced redox status, and sensitized cancer cells to cisplatin treatment in patient-derived xenografts. Our findings provide insight into the crosstalk between kinase-mediated metabolic regulation and platinum-based chemotherapy resistance in human cancers. Our study also suggests a distinctive signaling function of IP4 that regulates NOX4. Furthermore, pharmaceutical inhibition of ITPKB displayed synergistic attenuation of tumor growth with cisplatin, suggesting ITPKB as a promising synthetic lethal target for cancer therapeutic intervention to overcome cisplatin resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546469 | PMC |
http://dx.doi.org/10.1172/JCI124550 | DOI Listing |
Acta Neurochir (Wien)
December 2024
Medical Faculty of Heidelberg University, Heidelberg, Germany.
Introduction: Tumorous growths in the sellar region pose significant clinical challenges due to their proximity to critical visual structures such as the optic chiasm and optic nerves. Given their proximity to the optic system, these tumors are often diagnosed due to a progressive decrease in visual acuity. Thus, surgical intervention is crucial to prevent irreversible damage, as timely decompression can halt the progression of edema and subsequent optic atrophy.
View Article and Find Full Text PDFInt J Cancer
December 2024
Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
Overcoming luminal breast cancer (BrCa) progression remains a critical challenge for improved overall patient survival. RUNX2 has emerged as a protein related to aggressiveness in triple-negative BrCa, however its role in luminal tumors remains elusive. We have previously shown that active FGFR2 (FGFR2-CA) contributes to increased tumor growth and that RUNX2 expression was high in hormone-independent mouse mammary carcinomas.
View Article and Find Full Text PDFMalays J Pathol
December 2024
Universiti Sains Malaysia, School of Dental Sciences, Health Campus, Kubang Kerian, Kelantan, Malaysia.
Introduction: Oral cancer is considered the sixth most common form of cancer worldwide. It causes significant morbidity and mortality, especially in low socioeconomic status groups. However, Cancer chemoprevention encompasses the use of specific compounds to suppress the growth of tumours or inhibit carcinogenesis.
View Article and Find Full Text PDF<b>Background and Objective:</b> Cervical cancer is the second most common cancer in Indonesia, where traditional herbal treatments like <i>Zanthoxylum acanthopodium</i> (andaliman) are culturally used. Investigating protein biomarkers such as E7, pRb, EGFR and p16 can help assess the efficacy of these treatments. <b>Materials and Methods:</b> There were 5 groups in this study: 2 control groups (C- and C+) and 3 treatment groups (each receiving one of three doses).
View Article and Find Full Text PDFCancer Sci
December 2024
Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.
Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!