Interest in paleoenvironmental reconstructions from biomarkers in speleothems is increasing, thanks in part to the capacity of speleothems to grow continuously and to resist postdepositional alteration. In particular, the possibility exists to link high-resolution and accurately dated fire and vegetation records with isotopic data of climatic and paleoenvironmental interactions at the local and regional scale. However, the scarcity of existing methods for the quantification of organic molecules in stalagmites, together with the issues of sample availability, contamination, and low concentrations, complicate this approach. In this work, we developed a novel method for the simultaneous determination of 18 polycyclic aromatic hydrocarbons (PAHs) and 26 n-alkanes (C-C) and then tested it on "clean" calcite and aragonite stalagmite samples from cave KNI-51 in the Australian tropics. The method involves subsampling by using a hand-held drill, complete dissolution of the matrix in hydrochloric acid, then liquid-liquid extraction, and GC-MS analysis. Sample preparation was carried out in a 10 000 class clean room built entirely in stainless steel to avoid contamination. Detection limits were 0.3-9 ng for PAHs and 6-44 ng for n-alkanes. Measurable concentrations of fire-derived PAH compounds, namely, phenanthrene, pyrene, benzo( e)pyrene, and indeno(123- cd)pyrene, were detected in only one sample, which dates to the year ∼2004 CE, when a fire burned vegetation over the cave; n-alkanes were detected in all samples in the range C-C, with no odd-even preference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b00767 | DOI Listing |
Mar Pollut Bull
January 2025
Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil; Universidade Federal de Pernambuco, Department of Zoology, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil. Electronic address:
During the last half of 2019, the Northeast coast of Brazil suffered from an extensive oil spill of unknown origin, and marine organisms in those areas were subjected to significant impacts. In situations like this, the contaminant effects can persist for varying periods. Oil contaminants, such as polycyclic aromatic hydrocarbons (PAHs), generally reduce taxa's abundance and diversity in benthic communities in areas with greater exposure to chemical components.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Jianghan University, Wuhan 430056, China.
The extensive application of cement kiln industry results in substantial stack gas emissions, posing a potential risk of discharging organic pollutants. Cement industry is not considered as a primary contributor to persistent organic pollutants like polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), owing to its extremely low emission factor. However, knowledge on the previously unrecognized chemicals that may possess higher emission factors from cement industry is lacking.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:
This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:
Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA. Electronic address:
Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) are recalcitrant organic pollutants often detected in stormwater. Various stormwater control measures (SCMs) can remove PAHs and PCBs by filtration, adsorption, and biodegradation. However, dissolved PAHs and PCBs remain present in the treated outflow of SCMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!