Lithium-sulfur batteries are a major focus of academic and industrial energy-storage research due to their high theoretical energy density and the use of low-cost materials. The high energy density results from the conversion mechanism that lithium-sulfur cells utilize. The sulfur cathode, being naturally abundant and environmentally friendly, makes lithium-sulfur batteries a potential next-generation energy-storage technology. The current state of the research indicates that lithium-sulfur cells are now at the point of transitioning from laboratory-scale devices to a more practical energy-storage application. Based on similar electrochemical conversion reactions, the low-cost sulfur cathode can be coupled with a wide range of metallic anodes, such as sodium, potassium, magnesium, calcium, and aluminum. These new "metal-sulfur" systems exhibit great potential in either lowering the production cost or producing high energy density. Inspired by the rapid development of lithium-sulfur batteries and the prospect of metal-sulfur cells, here, over 450 research articles are summarized to analyze the research progress and explore the electrochemical characteristics, cell-assembly parameters, cell-testing conditions, and materials design. In addition to highlighting the current research progress, the possible future areas of research which are needed to bring conversion-type lithium-sulfur and other metal-sulfur batteries into the market are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201901125 | DOI Listing |
Adv Mater
January 2025
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China.
Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å).
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
Catalysts are essential for achieving high-performance lithium-sulfur batteries. The precise design and regulation of catalytic sites to strengthen their efficiency and robustness remains challenging. In this study, spinel sulfides and catalyst design principles through element doping are investigated.
View Article and Find Full Text PDFMater Horiz
January 2025
National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
The shuttling effect of polysulfides in lithium-sulfur batteries seriously affects their performance. Herein, NiFeO derived from natural hematite is coated on a PP separator (NFO@PP), which can effectively block the shuttling of polysulfides and has strong adsorption and catalytic capabilities. The NFO@PP cell has an initial capacity of up to 1258.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore639798 ,Singapore.
Understanding the structure-property relationship and the way in which catalysts facilitate polysulfide conversion is crucial for the rational design of lithium-sulfur (Li-S) battery catalysts. Herein, a series of NiAlO, CoAlO, and CuAlO spinel oxides with varying Ni, Co, or Cu tetrahedral and octahedral site occupancy are studied as Li-S battery catalysts. Combined with experimental and theoretical analysis, the tetrahedral site is identified as the most active site for enhancing polysulfide adsorption and charge transfer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!