The majority of mammalian species are uniparental, with the mother solely providing care for young conspecifics, although fathering behaviours can emerge under certain circumstances. For example, a great deal of individual variation in response to young pups has been reported in multiple inbred strains of laboratory male mice. Furthermore, sexual experience and subsequent cohabitation with a female conspecific can induce caregiving responses in otherwise indifferent, fearful or aggressive males. Thus, a highly conserved parental neural circuit is likely present in both sexes; however, the extent to which infants are capable of activating this circuit may vary. In support of this idea, fearful or indifferent responses toward pups in female mice are linked to greater immediate early gene (IEG) expression in a fear/defensive circuit involving the anterior hypothalamus compared to that in an approach/attraction circuit involving the ventral tegmental area. However, experience with infants, particularly in combination with histone deacetylase inhibitor (HDACi) treatment, can reverse this pattern of pup-induced activation of fear/defence circuitry and promote approach behaviour. Thus, HDACi treatment may increase the transcription of primed/poised genes that play a role in the activation and selection of a maternal approach circuit in response to pup stimuli. In the present study, we investigated whether HDACi treatment would impact behavioural response selection and associated IEG expression changes in virgin male mice that are capable of ignoring, attacking or caring for pups. The results obtained indicate that systemic HDACi treatment induces spontaneous caregiving behaviour in non-aggressive male mice and alters the pattern of pup-induced IEG expression across a fear/defensive neural circuit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571573PMC
http://dx.doi.org/10.1111/jne.12734DOI Listing

Publication Analysis

Top Keywords

male mice
16
hdaci treatment
16
ieg expression
12
histone deacetylase
8
deacetylase inhibitor
8
spontaneous caregiving
8
caregiving behaviour
8
behaviour non-aggressive
8
virgin male
8
neural circuit
8

Similar Publications

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Ticam2 ablation facilitates monocyte exhaustion recovery after sepsis.

Sci Rep

January 2025

Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0910, USA.

Sepsis is a leading cause of death worldwide, with most patient mortality stemming from lingering immunosuppression in sepsis survivors. This is due in part to immune dysfunction resulting from monocyte exhaustion, a phenotype of reduced antigen presentation, altered CD14/CD16 inflammatory subtypes, and disrupted cytokine production. Whereas previous research demonstrated improved sepsis survival in Ticam2 mice, the contribution of TICAM2 to long-term exhaustion memory remained unknown.

View Article and Find Full Text PDF

Plasma levels of anti phosphocholine IgM antibodies are negatively correlated with bone mineral density in humans.

Sci Rep

January 2025

Division of Endocrinology and Metabolism and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, 4301 W. Markham, #587, Little Rock, AR, 72205, USA.

Phosphatidylcholine is a ubiquitous phospholipid. It contains a phosphocholine (PC) headgroup and polyunsaturated fatty acids that, when oxidized, form reactive oxidized phospholipids (PC-OxPLs). PC-OxPLs are pathogenic in multiple diseases and neutralized by anti-PC IgM antibodies.

View Article and Find Full Text PDF

A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.

View Article and Find Full Text PDF

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!