The Cholesterol-synthesizing proteins (HMGCS1 and HMGCS2) are mitochondrial enzymes that believed to catalyze the first reaction of ketogenesis, the process by which energy is provided from fats in the absence of carbohydrates. Typically, astrocytes developed from its progenitor cells in the embryonic optic nerve and enriched with HMGCS1 and 2. However, the detailed histomorphology of camel HMGCS1 and 2 remains to be clearly defined. Here, we investigated the changes that associate with astrocytes differentiation within the developing camel optic nerve. Firstly, we isolated cDNAs encoding HMGCS1 and 2 from the optic nerve. Then, we found that HMGCS1 shared high similarity to human, while HMGCS2 showed a lower similarity and was more diverse. Immunohistochemical studies revealed that distinct correlation of astrocytes differentiation with HMGCS1 and 2 expressions in the developing camel optic nerve. Both encoded proteins were localized throughout the cytoplasm, as well as the nuclei of the astrocytes. In addition, semi-quantitative PCR analysis and western analysis confirmed that both HMGCS1 and 2 were highly expressed in camel optic nerve as well as other tissue, but they were lower in both skeletal and heart muscles. Moreover, various stains such as Sudan black and florescence filipin stains were used to visualize the free cholesterol in the astrocytes, indicating the enzymatic activity of HMGCS1 and 2. Together, our study reported the first comprehensive investigation of the molecular cloning and cellular expression of HMGCS1 and 2 in the optic nerve of dromedary camel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acthis.2019.05.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!