In a conventional microorganism-mediated biological process for degradation of keratinous waste material the production of keratin-specific proteases (i.e., keratinases) and the hydrolysis of keratin-rich residual biomass both take place during the same stage of the bioprocess and, as a consequence, occur simultaneously under suboptimal conditions. In the present study the keratinolytic actinomycete Amycolatopsis keratiniphila D2 was successfully employed to biodegrade thermally pretreated porcine bristles at high solids loading (16% w/v) via a novel cultivation methodology. Indeed, the two-stage submerged fermentation process developed in this work enabled to efficiently recover, in a single unit operation, about 73% of the protein material contained in the keratinous biowaste structure, resulting in an overall accumulation of 89.3 g·L protein-rich hydrolysate and a productivity of 427 mg crude soluble proteins per litre per hour. The obtained protein hydrolysate powder displayed a 2.2-fold increase in its in vitro pepsin digestibility (95%) with respect to the non-hydrolysed pretreated substrate (43%). In addition, the chromatogram obtained by size-exclusion chromatography analysis of the final product indicated that, among the identified fractions, those consisting of small peptides and free amino acids were the most abundantly present inside the analysed sample. Given these facts it is possible to conclude that the soluble proteins, peptides and free amino acids recovered through the newly designed two-stage bioextraction process could represent a viable alternative source of protein in animal feed formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.03.067DOI Listing

Publication Analysis

Top Keywords

protein hydrolysate
8
amycolatopsis keratiniphila
8
soluble proteins
8
peptides free
8
free amino
8
amino acids
8
integrated strategy
4
strategy effective
4
effective production
4
production bristle
4

Similar Publications

How peptide migration and fraction bioactivity are modulated by applied electrical current conditions during electromembrane process separation: A comprehensive machine learning-based peptidomic approach.

Food Res Int

January 2025

Department of Food Science, Université Laval, Québec G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec G1V 0A6, Canada. Electronic address:

Industrial wastewaters are significant global concerns due to their environmental impact. Yet, protein-rich wastewaters can be valorized by enzymatic hydrolysis to release bioactive peptides. However, achieving selective molecular differentiation and eventually enhancing peptide bioactivities require costly cascades of membranes.

View Article and Find Full Text PDF

Changes of shrimp myofibrillar proteins hydrolyzed by Virgibacillus proteases: Structural characterization, mechanism visualization, and flavor compound formation.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:

To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.

View Article and Find Full Text PDF

Structure-based method for the discovery of selective inhibitors of PED 5 in erectile dysfunction therapy from the Pacific oyster peptides (Crassostrea gigas): Peptidomic analysis, molecular docking, and activity validation.

Int J Biol Macromol

January 2025

Center for Mitochondria and Healthy Aging, School of Life Sciences, Yantai University, Yantai 264005, China; College of Life Sciences, Yantai University, Yantai 264005, Shandong, China. Electronic address:

Erectile dysfunction (ED) is a male sexual disorder mainly caused by a reduction in the cellular concentration of cyclic guanosine monophosphate (cGMP), which is degraded by phosphodiesterase type-5 (PDE-5). Oyster protein (OP) and its hydrolysates have been used for centuries to address male erectile dysfunction, however the mechanisms and evidence supporting their efficacy remain unclear. In this study, OP was hydrolyzed using trypsin to produce peptides that inhibit PDE-5.

View Article and Find Full Text PDF

Insect protein hydrolysates (PH) are emerging as valuable compounds with biological activity. The aim of the present study was to assess the potential cytoprotective effects of PH from the Black Soldier Fly (BPH, in the range 0.1-0.

View Article and Find Full Text PDF

Background: Consuming collagen hydrolysate (CH) may improve symptoms of exercise-induced muscle damage (EIMD); however, its acute effects have not been compared to dairy protein (DP), the most commonly consumed form of protein supplement. Therefore, this study compared the effects of CH and DP on recovery from EIMD.

Methods: Thirty-three males consumed either CH ( = 11) or DP ( = 11), containing 25 g of protein, or an isoenergetic placebo ( = 11) immediately post-exercise and once daily for three days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!