Gold&silver recovery from jewelry waste with combination of physical and physicochemical methods.

Waste Manag

Istanbul Technical University, Mineral Processing Engineering Department, Recycling, Separation and Purification Research Group, 34467 Maslak, Istanbul, Turkey.

Published: April 2019

The recovery of precious metals can be successfully managed from waste which is considered to be secondary sources of raw material. Waste derived from jewelry activity falls in this category, and represents an essential component of precious metals. The most important metals in the jewelry sector are gold (Au) and silver (Ag). As a result of workmanship, the thin metals, jewel parts and metallic powders are generated and the dust produced from jewelry workshops is of great importance. This paper describes the concentration and recovery of Au and Ag from floor sweeping waste at jewelry workshops by physical (shaking table, multi gravity separator (MGS), Knelson and Falcon concentrators) and physicochemical methods (froth flotation). Experimental results demonstrated that the gravity beneficiation methods were effective for eliminating much of the waste matrix. A heavy fraction with 701 g/t Au and 6017 g/t Ag content was obtained from a feed assaying 183 g/t Au and 1835 g/t Ag by shaking table separator. For enhanced beneficiation, the middling's from tabling were subjected to centrifugal separator and Ag grade increased from 848 g/t to 7812 g/t. Au and Ag fractions discharged in tailings from gravity and centrifugal separations were successfully concentrated using froth flotation and led to a total recovery around 92% both for Au and Ag.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2019.03.062DOI Listing

Publication Analysis

Top Keywords

physicochemical methods
8
precious metals
8
jewelry workshops
8
shaking table
8
froth flotation
8
jewelry
5
waste
5
gold&silver recovery
4
recovery jewelry
4
jewelry waste
4

Similar Publications

Graphene oxide-based fluorescent biosensors for pathogenic bacteria detection: A review.

Anal Chim Acta

February 2025

Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China. Electronic address:

Background: Pathogenic bacteria are widespread in nature and can cause infections and various complications, thereby posing a severe risk to public health. Therefore, simple, rapid, sensitive, and cost-effective methods must be developed to detect pathogenic bacteria. Biosensors are prominent platforms for detecting pathogenic bacteria owing to their high sensitivity, specificity, repeatability, and stability.

View Article and Find Full Text PDF

Efficient, non-destructive and real-time meat freshness assessment has always been a hot research topic. This paper presents a novel approach for detecting lamb meat freshness using a flexible optoelectronic sensing system combined with an integrated learning model. We developed a flexible impedance sensing system and a flexible optical sensing system through laser direct writing and transfer technology.

View Article and Find Full Text PDF

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Specific recognition mechanism of an antibody to sulfated tyrosine and its potential use in biological research.

J Biol Chem

January 2025

Department of Bioengineering, School of Engineering, The University of Tokyo; Institute of Medical Science, The University of Tokyo; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Japan. Electronic address:

Post-translational modification of proteins is a crucial biological reaction that regulates protein functions by altering molecular properties. The specific detection of such modifications in proteins has made significant contributions to molecular biology research and holds potential for future drug development applications. In HIV research, for example, tyrosine sulfation at the N-terminus of C-C chemokine receptor type 5 (CCR5) is considered to significantly enhance HIV infection efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!