The present paper examines the pyrolysis of waste from leather tanneries at 300-500 °C. These studies are important because of difficulties in the utilisation of this type of waste as well as its energy potential as fuel. The pyrolysis of tannery waste and data from the relevant literature showed that thermal degradation can be explained using tanned collagen as a reference. Moreover, the experimental results indicated that this process is highly non-linear, due to various mechanisms of heat transport which cause temperature differences in a laboratory pyrolysis reactor. Thermogravimetric analysis has shown that the greater part of mass loss is observed between 80 and 500 °C and that the most significant mass release occurs at 325 °C. Moreover, the proportions of CO and CO decrease along with increasing temperatures. The paper presents characteristics of the composition of solid, liquid, and gaseous products of leather-waste pyrolysis at various temperatures. The maximum heating value of gaseous products at 500 °C was 9.54 MJ/Nm. An increase from 300 to 500 °C results in the dominant position of condensation polymerisation; the maximum value of the liquid phase yield is reached at 400 °C (42%). HHV analysis of the resulting char showed a maximum value of 21.18 MJ/kg at 450 °C. The results of oxidised component analysis showed that the major oxidised component of char was chromium oxide (CrO), with a content of approximately 8.5% at all pyrolysis temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2019.03.046 | DOI Listing |
Environ Res
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong. Electronic address:
Porous graphitized carbon (PGC)-supported CoFeO bimetallic catalysts (CoFeO/PGC) were prepared by a hydrothermal method using Fe(NO)·9HO and Co(NO)·6HO as precursors and were used to activate peroxymonosulfate (PMS) for the degradation of chlorobenzene (CB). Under the conditions of CoFeO/PGC catalysts and PMS concentrations of 0.1 g/L and 5 mM, respectively, in a wide range of pH (5.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system.
View Article and Find Full Text PDFHeliyon
December 2024
Center of Environment and Development, College of Development Studies, Addis Ababa University, Addis Ababa, P.O.Box 1176, Addis Ababa, Ethiopia.
Rural areas in Ethiopia serve as the primary source of charcoal for urban populations, mainly produced using traditional kilns. However, this traditional method significantly contributes to greenhouse gas (GHG) emissions, exacerbating climate change and deforestation. While banning charcoal production is not currently feasible in Ethiopia because of the lack of affordable alternative energy sources (fuel), improving the efficiency of the traditional production system can mitigate the climate impact caused by charcoal production.
View Article and Find Full Text PDFFood Chem X
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Herein, the miniaturized thermal purge-and-trap (MTPT) device combined with self-calibration colorimetric/surface-enhanced Raman spectroscopy (SERS) dual-model optical sensors were designed for effective analysis of sulfur dioxide (SO) in wine. The SO can be rapidly separated from wine and enriched by MTPT device, ensuring colorimetric/SERS dual-model optical sensing based on Karl Fischer reaction. The high separation efficiency of miniaturized MTPT device combined with self-calibration of dual-model optical sensors significantly alleviate matrix interference and improve the detection accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!