Integrating Enzyme and Metabolic Engineering Tools for Enhanced α-Ionone Production.

J Agric Food Chem

Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore.

Published: December 2019

Metabolic engineering aims to balance intracellular pathways and increase the precursor supply. However, some heterologous enzymes are not evolved to support high flux. To remove the limitation, the catalytic properties of rate-limiting enzymes must be enhanced. Here, we engineered carotenoid cleavage dioxygenase 1 (CCD1), whose intrinsic promiscuity and low activity limited the production of α-ionone in . Site-directed mutagenesis was carried out to mutate three structural elements of CCD1: an active site loop, η-helices, and α-helices. Furthermore, mutated CCD1 was fused with lycopene ε-cyclase to facilitate substrate channelling. Collectively, these methods improved the α-ionone concentration by >2.5-fold compared to our previously optimized strain. Lastly, the engineered enzyme was used in conjunction with the metabolic engineering strategy to further boost the α-ionone concentration by another 20%. This work deepens our understanding of CCD1 catalytic properties and proves that integrating enzyme and metabolic engineering can be synergistic for a higher microbial production yield.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b00860DOI Listing

Publication Analysis

Top Keywords

metabolic engineering
16
integrating enzyme
8
enzyme metabolic
8
catalytic properties
8
α-ionone concentration
8
metabolic
4
engineering
4
engineering tools
4
tools enhanced
4
α-ionone
4

Similar Publications

Construction of antibiotic-free riboflavin producer in by metabolic engineering strategies with a plasmid stabilization system.

Synth Syst Biotechnol

June 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.

Riboflavin, an important vitamin utilized in pharmaceutical products and as a feed additive, is mainly produced by metabolically engineered bacterial fermentation. However, the reliance on antibiotics in the production process leads to increased costs and safety risks. To address these challenges, an antibiotic-free riboflavin producer was constructed using metabolic engineering approaches coupled with a novel plasmid stabilization system.

View Article and Find Full Text PDF

The regulation of cellular metabolism is crucial for cell survival, with Sch9 in serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization.

View Article and Find Full Text PDF

Semi-rational design of an aromatic dioxygenase by substrate tunnel redirection.

iScience

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Lignin valorization is crucial for achieving economic and sustainable biorefinery processes. However, the enzyme substrate preferences involved in lignin degradation remain poorly understood, and low activity toward specific substrates presents a significant challenge to the efficient utilization of lignin. In this study, we investigated the substrate promiscuity of Ado, a key enzyme involved in lignin valorization.

View Article and Find Full Text PDF

Reversal of inflammatory reprogramming by vasodilator agents in pulmonary hypertension.

ERJ Open Res

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.

Background: Pulmonary arterial hypertension (PAH) is a deadly disease without effective non-invasive diagnostic and prognostic testing. It remains unclear whether vasodilators reverse inflammatory activation, a part of PAH pathogenesis. Single-cell profiling of inflammatory cells in blood could clarify these PAH mechanisms.

View Article and Find Full Text PDF

Neuromuscular controllers (NMCs) offer a promising approach to adaptive and task-invariant control of exoskeletons for walking assistance, leveraging the bioinspired models based on the peripheral nervous system. This article expands on our previous development of a novel structure for NMCs with modifications to the virtual muscle model and reflex modulation strategy. The modifications consist firstly of simplifications to the Hill-type virtual muscle model, resulting in a more straightforward formulation and reduced number of parameters; and second, using a finer division of gait subphases in the reflex modulation state machine, allowing for a higher degree of control over the shape of the assistive profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!