Using next-generation sequencing to characterize agents associated with a severe stunting disease of parsley from Germany, we identified a hitherto undescribed virus. We sequenced total RNA and rolling-circle-amplified DNA from diseased plants. The genome sequence of the virus shows that it is a member of the genus Nanovirus, but it lacks DNA-U4. In addition to the seven genomic DNAs of the virus, we identified a second DNA-R and seven distinct alphasatellites associated with the disease. We propose the name "parsley severe stunt associated virus" (PSSaV) for this novel nanovirus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-019-04280-3 | DOI Listing |
Virus Res
September 2020
The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
Fresh leaf vegetables are a significant part of the Persian food. Following a survey for identification of nanoviruses and geminivirus infecting leaf vegetables, a novel geminivirus was identified in a diseased parsley sample showing upward marginal leaf curling, marginal leaf yellowing, dwarfing and reduced leaf size in south-eastern Iran. The genome was identified through combination of rolling circle amplification (RCA) and high throughput sequencing (HTS) approaches.
View Article and Find Full Text PDFVirus Res
January 2020
The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
Members of the family Nanoviridae are multi-component single-stranded DNA viruses that infect a variety of plant species. Using a combination of conventional PCR and high throughput sequencing-based approach, we identified a novel nanovirus infecting two symptomatic milk vetch plants (Astragalus myriacanthus Boiss.; family Fabaceae) showing marginal leaf chlorosis, little leaves and dwarfing in Iran.
View Article and Find Full Text PDFArch Virol
July 2019
Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Messeweg 11/12, 38104, Brunswick, Germany.
Using next-generation sequencing to characterize agents associated with a severe stunting disease of parsley from Germany, we identified a hitherto undescribed virus. We sequenced total RNA and rolling-circle-amplified DNA from diseased plants. The genome sequence of the virus shows that it is a member of the genus Nanovirus, but it lacks DNA-U4.
View Article and Find Full Text PDFArch Virol
March 2018
BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
Nanoviruses are multi-component plant-infecting single-stranded DNA viruses. Using a viral metagenomics-informed approach, a new nanovirus and two associated alphasatellite molecules have been identified in an uncultivated asymptomatic Vicia cracca plant in the Rhône region of France. This novel nanovirus genome includes eight genomic components (named DNA-R, DNA-S, DNA-M, DNA-C, DNA-N, DNA-U1, DNA-U2 and DNA-U4) and, across all components, shares < 66% pairwise sequence identity with other nanovirus genomes.
View Article and Find Full Text PDFViruses
November 2017
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7 B, 38124 Braunschweig, Germany.
Geminiviral single-stranded circular DNA genomes replicate in nuclei so that the progeny DNA has to cross both the nuclear envelope and the plasmodesmata for systemic spread within plant tissues. For intra- and intercellular transport, two proteins are required: a nuclear shuttle protein (NSP) and a movement protein (MP). New characteristics of ectopically produced Abutilon mosaic virus (AbMV) MP (MP), either authentically expressed or fused to a yellow fluorescent protein or epitope tags, respectively, were determined by localization studies in mammalian cell lines in comparison to plant cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!