AI Article Synopsis

Article Abstract

Metabolic bone disease of prematurity (MBDP) is characterised by skeletal demineralisation, and in severe cases it can result in fragility fractures of long bones and ribs during routine handling. MBDP arises from prenatal and postnatal factors. Infants who are born preterm are deprived of fetal mineral accumulation, 80% of which occurs in the third trimester. Postnatally, it is difficult to maintain a comparable intake of minerals, and medications, such as corticosteroids and diuretic therapy, lead to bone resorption. With improvements in neonatal care and nutrition, the incidence of MBDP in preterm infants appears to have decreased, although the recent practice of administering phosphate supplements alone will result in secondary hyperparathyroidism and associated bone loss, worsening MBDP. Postnatal immobilisation and loss of placental supply of oestrogen also contribute to skeletal demineralisation. There is no single diagnostic or screening test for MBDP, with pitfalls existing for most radiological and biochemical investigations. By reviewing the pathophysiology of calcium and phosphate homeostasis, one can establish that plasma parathyroid hormone is important in determining the aetiology of MBDP - primarily calcipaenia or phosphopaenia. This will then direct treatment with the appropriate supplements while considering optimal physiological calcium to phosphate ratios.

Download full-text PDF

Source
http://dx.doi.org/10.1136/archdischild-2018-316330DOI Listing

Publication Analysis

Top Keywords

metabolic bone
8
bone disease
8
disease prematurity
8
skeletal demineralisation
8
calcium phosphate
8
mbdp
6
prematurity recognition
4
recognition prevention
4
prevention treatment
4
treatment long-term
4

Similar Publications

Associations of fat, bone, and muscle indices with disease severity in patients with obstructive sleep apnea hypopnea syndrome.

Sleep Breath

January 2025

Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.

Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.

Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.

View Article and Find Full Text PDF

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Aim: To systematically review the prevalence and incidence of osteoporosis, osteopenia, low bone mass, and fragility fracture in adults with cerebral palsy (CP), and identify the risk factors for osteoporosis and fracture.

Method: A systematic literature search was performed in the MEDLINE, PubMed, CINAHL, AMED, Cochrane Reviews, EMBASE, and EBM database reviews from inception until May 2024. Search terms covered a combination of keywords for CP, fracture, osteoporosis, incidence and prevalence, and risk factors.

View Article and Find Full Text PDF

Background: Currently, the pathophysiology of new bone formation in radiographic axial spondyloarthritis (r-axSpA) remains unclear. Cellular elements and their secreted bone turnover markers might be one of the underlying mechanisms that drive the new bone formation. Our study aimed to investigate the role of bone turnover markers in r-axSpA patients with fatty lesions.

View Article and Find Full Text PDF

Purpose: We aimed to explore the mechanism by which Boron-doped nano-hydroxyapatite (B-nHAp) facilitates the proliferation and differentiation of osteoblasts through controlled release of B.

Methods: B-nHAp characterization was accomplished by means of X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to flow cytometry, alizarin red S staining, and cell counting kit-8 assay for proliferation and differentiation determination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!