Constructed wetlands can treat highly alkaline leachate resulting from the weathering of steel slag before reuse (e.g. as aggregate) or during disposal in repositories and legacy sites. This study aimed to assess how metal(loid)s soluble at high pH, such as arsenic (As), chromium (Cr), and vanadium (V) are removed in constructed wetlands and how they accumulate in the sediments and the plants (Phragmites australis, common reed). The results show that reedbeds were very effective at removing calcium (98%), aluminium (81%), barium (98%), chromium (90%), gallium (80%), nickel (98%), and zinc (98%), and lowering pH and alkalinity. No statistical difference was found for As and V between leachate influent and wetland samples, showing that these metal(loid)s were not efficiently removed. As, Cr, and V were significantly higher in the reedbed sediments than in a reference site. However, sediment concentrations are not at levels that would pose a concern regarding reuse for agricultural purposes (average values of 39 ± 26 mg kg for As, 108 ± 15 mg kg for Cr, and 231 ± 34 mg kg for V). Also, there is no significant uptake of metals by the aboveground portions of the reeds compared to reference conditions. Results show statistically significant enrichment in metal(loid)s in rhizomes and also a seasonal effect on the Cr concentrations. The data suggest minimal risk of oxyanion-forming element uptake and cycling in wetlands receiving alkaline steel slag.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.04.127DOI Listing

Publication Analysis

Top Keywords

constructed wetlands
12
steel slag
12
arsenic chromium
8
chromium vanadium
8
sediments plants
8
wetlands steel
4
slag leachate
4
leachate management
4
management partitioning
4
partitioning arsenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!