A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of different legume species and densities on arbuscular mycorrhizal fungal communities in a karst grassland ecosystem. | LitMetric

Effects of different legume species and densities on arbuscular mycorrhizal fungal communities in a karst grassland ecosystem.

Sci Total Environ

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China. Electronic address:

Published: August 2019

Legumes can increase nitrogen (N) input to soil via N fixation, and arbuscular mycorrhizal fungi (AMF) can colonize legumes, which further promotes the acquisition of nutrients such as phosphorus (P). Nevertheless, little is known about how different legume species or planting densities affect soil AMF communities. We measured soil AMF abundance, diversity, and community composition in two legume species that had been planted at two densities in a karst grassland. Five treatments were used: control (CK), Amorpha fruticosa at 1.5 × 2 m density (AFD1), A. fruticosa at 1 × 1 m density (AFD2), Indigofera atropurpurea at 1.5 × 2 m density (IAD1), and I. atropurpurea at 1 × 1 m density (IAD2). The results showed that A. fruticosa plots were significantly richer in Redeckera spp., while I. atropurpurea plots were richer in Septoglomus. AMF abundance in AFD1, AFD2, and IAD1 was significantly higher than in CK, but AMF abundance in IAD2 was significantly lower than that in the other treatments. AMF richness and Chao1 estimator in AFD1 were significantly higher than in CK. Funneliformis, Septoglomus, and Acaulospora were significantly more abundant in IAD2 than in the other treatments. The interaction between legume species and density had a significant effect on AMF abundance and community composition. AMF abundance and diversity were significantly negatively and positively correlated with available P and microbial biomass N, respectively. These results suggest that different species and densities of legumes may increase available N, which could improve AMF abundance and alleviate soil P deficiencies. Planting A. fruticosa or I. atropurpurea at a low density may be an effective method to increase AMF colonization of roots, and thus, nutrient transport in karst grasslands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.04.293DOI Listing

Publication Analysis

Top Keywords

amf abundance
24
legume species
16
amf
10
species densities
8
arbuscular mycorrhizal
8
karst grassland
8
legumes increase
8
soil amf
8
abundance diversity
8
community composition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!