Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein.

Acta Biomater

Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China. Electronic address:

Published: July 2019

Annulus fibrosus (AF) tissue engineering has attracted increasing attention as a promising therapy for degenerative disc disease (DDD). However, regeneration of AF still faces many challenges due to the tremendous complexity of this tissue and lack of in-depth understanding of the structure-function relationship at cellular level within AF is highly required. In light of the fact that AF is composed of various types of cells and has gradient mechanical, topographical and biochemical features along the radial direction. In this study, we aimed to achieve directed differentiation of AF-derived stem cells (AFSCs) by mimicking the mechanical and topographical features of native AF tissue. AFSCs were cultured on four types of electrospun poly(ether carbonate urethane)urea (PECUU) scaffolds with various stiffness and fiber size (soft, small size; stiff, small size; soft, large size and stiff, large size). The results show that with constant fiber size, the expression level of the outer AF (oAF) phenotypic marker genes in AFSCs increased with the scaffold stiffness, while that of inner AF (iAF) phenotypic marker genes showed an opposite trend. When scaffold stiffness was fixed, the expression of oAF phenotypic marker genes in AFSCs increased with fiber size. While the expression of iAF phenotypic marker genes decreased. Such substrate stiffness- and topography-dependent changes of AFSCs was in accordance with the genetic and biochemical distribution of AF tissue from the inner to outer regions. Further, we found that the Yes-associated protein (YAP) was translocated to the nucleus in AFSCs cultured with increasing stiffness and fiber size of scaffolds, yet it remained mostly phosphorylated and cytosolic in cells on soft scaffolds with small fiber size. Inhibition of YAP down-regulated the expression of tendon/ligament-related genes, whereas expression of the cartilage-related genes was upregulated. The results illustrate that matrix stiffness is a potent regulator of AFSC differentiation. Moreover, we reveal that fiber size of scaffolds induced changes in cell adhesions and determined cell shape, spreading area, and extracellular matrix expression. In all, both mechanical property and topography features of scaffolds regulate AFSC differentiation, possibly through a YAP-dependent mechanotransduction mechanism. STATEMENT OF SIGNIFICANCE: Physical cues such as mechanical properties, topographical and geometrical features were shown to profoundly impact the growth and differentiation of cultured stem cells. Previously, we have found that the differentiation of annulus fibrosus-derived stem cells (AFSCs) could be regulated by the stiffness of scaffold. In this study, we fabricated four types of poly(ether carbonate urethane)urea (PECUU) scaffolds with controlled stiffness and fiber size to explore the potential of induced differentiation of AFSCs. We found that AFSCs are able to present different gene expression patterns simply as a result of the stiffness and fiber size of scaffold material. This work has, for the first time, demonstrated that larger-sized and higher-stiffness substrates increase the amount of vinculin assembly and activate YAP signaling in pre-differentiated AFSCs. The present study affords an in-depth comprehension of materiobiology, and be helpful for explain the mechanism of YAP mechanosensing in AF in response to biophysical effects of materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.05.013DOI Listing

Publication Analysis

Top Keywords

fiber size
32
stem cells
16
stiffness fiber
16
phenotypic marker
16
marker genes
16
size
12
afscs
10
substrate stiffness-
8
stiffness- topography-dependent
8
differentiation annulus
8

Similar Publications

Comparison of Ultrasound Characteristics of Peripapillary Hyperreflective Ovoid Mass-Like Structures (PHOMS) and Optic Disc Drusen in Children.

J Neuroophthalmol

January 2025

Departments of Ophthalmology (DB, G-SY, GTL, RAA) and Neurology (DB, GTL, RAA), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Ophthalmology (AG, GTL, RAA), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

Background: In children, pseudopapilledema is frequently caused by peripapillary hyperreflective ovoid mass-like structures (PHOMS) or optic disc drusen (ODD). While enhanced depth imaging (EDI) OCT can identify both, lack of cooperation, especially from younger children due to the duration of testing, often necessitates the use of B-scan ultrasound (BSUS). This study investigated whether PHOMS are hyperreflective on BSUS and if BSUS can differentiate PHOMS from ODD.

View Article and Find Full Text PDF

The pectoralis muscle in birds is important for flight and thermogenesis. In migratory songbirds this muscle exhibits seasonal flexibility in size, but whether this flexibility reflects changes in muscle fiber type has not been well documented. We investigated how seasonal changes in photoperiod affected pectoralis muscle fiber type and metabolic enzymes, comparing among three closely-related sparrow species: two seasonal migrants and one year-round, temperate climate resident.

View Article and Find Full Text PDF

Effect of Hyaluronan Molecular Weight on the Stability and Biofunctionality of Microfibers Assembled by Interfacial Polyelectrolyte Complexation.

ACS Appl Mater Interfaces

January 2025

3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.

Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.

View Article and Find Full Text PDF

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

Efficient Biochemical Method for Characterizing and Classifying Related Amyloidogenic Peptides.

Anal Chem

January 2025

Institut de Recherche en Santé, Environnement et Travail (Irset)─Inserm─EHESP, UMR_S 1085, Université de Rennes, 9 av. du Professeur Léon Bernard, F-35042 Rennes, France.

Amyloidosis is a group of proteinopathies characterized by the systemic or organ-specific deposition of proteins in the form of amyloid fibers. Nearly 40 proteins play a role in these pathologies, and the structures of the associated fibers are beginning to be determined by Cryo-EM. However, the molecular events underlying the process, such as fiber nucleation and elongation, are poorly understood, which impairs developing efficient therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!