Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tendency of individual CpG sites to be methylated is distinctive, non-random and well-regulated throughout the genome. We investigated the structural and spatial factors influencing CpGs methylation by performing an ultra-deep targeted methylation analysis on human, mouse and zebrafish genes. We found that methylation is not a random process and that closer neighboring CpG sites are more likely to share the same methylation status. Moreover, if the distance between CpGs increases, the degree of co-methylation decreases. We set up a simulation model to analyze the contribution of both the intrinsic susceptibility and the distance effect on the probability of a CpG to be methylated. Our finding suggests that the establishment of a specific methylation pattern follows a universal rule that must take into account of the synergistic and dynamic interplay of these two main factors: the intrinsic methylation susceptibility of specific CpG and the nucleotide distance between two CpG sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2019.05.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!