Chronic infection with hepatitis B virus (HBV) is a major public health problem. Recently, RNA interfering-based strategy has shown great potential to eradicate HBV infection. In current study, we report the experimental observation of plant-derived artificial microRNAs (amiRNAs) acting as therapeutics in HBsAg transgenic mice. Two pieces of small silencing RNA sequences, siR471 and siR519, against HBV surface antigen gene (HBsAg) were designed and expressed in lettuce using plant endogenous microRNA biogenesis machinery. Administration of amiRNAs-containing lettuce decoction specifically inhibited the HBsAg gene expression. In long term treatments, the liver injury in HBsAg transgenic mice were alleviated and no toxicological effects were observed. Compared with synthetic siRNA, feeding amiRNAs at a lower level achieved a similar inhibitory effect on HBsAg expression in mice. These results strongly suggest that employing plant endogenous miRNA biogenesis machinery to generate medicinal siRNAs is a novel way to solve the problems of siRNA stability and reduce the potential side effects of RNAi therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2019.04.033 | DOI Listing |
Gut
December 2024
D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917), Hannover, Germany.
Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, carrying a greater risk of developing cirrhosis and its complications. For decades, pegylated interferon alpha (PegIFN-α) has represented the only therapeutic option, with limited virological response rates and poor tolerability. In 2020, the European Medicines Agency approved bulevirtide (BLV) at 2 mg/day, an entry inhibitor of hepatitis B virus (HBV)/hepatitis delta virus (HDV), which proved to be safe and effective as a monotherapy for up to 144 weeks in clinical trials and real-life studies, including patients with cirrhosis.
View Article and Find Full Text PDFJ Proteomics
January 2025
State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing 102206, PR China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, PR China; School of Medicine, Guizhou University, Guiyang 550025, PR China; Graduate School, Anhui Medical University, Hefei 230032, PR China. Electronic address:
To date, the molecular pathogenic mechanisms between HBsAg and liver metabolic disorders have not been fully understood. To explore the overall effects of HBsAg on liver tissues from HBV transgenic mice, proteome, interactome, and signal pathway analysis were employed to uncover the underlying mechanisms. Bioinformatics analysis of 191 differentially expressed proteins suggested that HBV upregulated the expression of multiple enzymes involved in lipid synthesis, and small HBs (SHBs) caused lipid accumulation in cells.
View Article and Find Full Text PDFJ Virol
November 2024
Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
Persistent infection with hepatitis B virus (HBV) often leads to disruptions in lipid metabolism. Apolipoprotein AII (apoAII) plays a crucial role in lipid metabolism and is implicated in various metabolic disorders. However, whether HBV could regulate apoAII and contribute to HBV-related dyslipidemia and the underlying mechanism remain unclear.
View Article and Find Full Text PDFGut
September 2024
Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
Objective: Selected populations of patients with chronic hepatitis B (CHB) may benefit from a combined use of pegylated interferon-alpha (pegIFN-α) and nucleos(t)ides (NUCs). The aim of our study was to assess the immunomodulatory effect of pegIFN-α on T and natural killer (NK) cell responses in NUC-suppressed patients to identify cellular and/or serological parameters to predict better T cell-restoring effect and better control of infection in response to pegIFN-α for a tailored application of IFN-α add-on.
Design: 53 HBeAg-negative NUC-treated patients with CHB were randomised at a 1:1 ratio to receive pegIFN-α-2a for 48 weeks, or to continue NUC therapy and then followed up for at least 6 months maintaining NUCs.
Heliyon
June 2024
Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Small interference RNA (siRNA) is a class of short double-stranded RNA molecules that cause mRNA degradation through an RNA interference mechanism and is a promising therapeutic modality. RBD1016 is a siRNA drug in clinical development for the treatment of chronic Hepatitis B Virus (HBV) infection, which contains a conjugated with N-acetylglucosamine moiety that can facilitate its hepatic delivery. We aimed to construct a semi-mechanistic model of RBD1016 in pre-clinical animals, to elucidate the pharmacokinetic/pharmacodynamic (PK/PD) profiles in mice and PK profiles in monkeys, which can lay the foundation for potential future translation of RBD1016 PK and PD from the pre-clinical stage to the clinic stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!