Effects of ZnO nanoparticles on high-rate denitrifying granular sludge and the role of phosphate in toxicity attenuation.

Environ Pollut

College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China. Electronic address:

Published: August 2019

The increasing release of engineered nanoparticles (NPs) from consumer products has raised great concerns about their impacts on biological wastewater treatment. In this study, the widely-used ZnO NP was selected as a model NP to investigate its impact on high-rate denitrifying granular sludge in terms of sludge properties and community structure. A hormesis effect was observed during short-term exposure, in which the specific denitrification activity (SDA) was stimulated by 10% at 1 mg L ZnO NPs, but inhibited by 23% at 5.0 mg L ZnO NPs. When continuously exposed to 2.5 mg L ZnO NPs, the nitrogen removal capacity of the denitrification reactor was nearly deprived within 15 days, and the relative abundance of the dominant denitrifying bacterium (Castellaniella) was decreased from 51.0 to 8.0%. Meanwhile, the dehydrogenase activity (DHA) and the content of extracellular polymeric substance (EPS) significantly decreased to 22.3 and 61.1%, respectively. Nevertheless, the presence of phosphate substantially weakened the adverse effects of ZnO NPs on the SDA, EPS, DHA and the relative abundance of functional genes even exposed to 6.25 mg L ZnO NPs, which was associated with the fact that the level of Zn(II) released from ZnO NPs was significantly reduced in the presence of phosphate. Therefore, the toxicity of ZnO NPs may be mainly attributed to the release of toxic Zn(II) and could be attenuated in the presence of phosphate. Overall, this study provided further reference and meaningful insights into the impact of engineered NPs on biological wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.04.138DOI Listing

Publication Analysis

Top Keywords

zno nps
28
presence phosphate
12
nps
9
effects zno
8
high-rate denitrifying
8
denitrifying granular
8
granular sludge
8
phosphate toxicity
8
biological wastewater
8
wastewater treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!