The evolution of phytochemical diversity and biosynthetic pathways in plants can be evaluated from a phylogenetic and environmental perspective. Pilocarpus Vahl (Rutaceae), an economically important medicinal plant in the family Rutaceae, has a great diversity of imidazole alkaloids and coumarins. In this study, we used phylogenetic comparative methods to determine whether there is a phylogenetic signal for chemical traits across the genus Pilocarpus; this included ancestral reconstructions of continuous and discrete chemical traits. Bioclimatic variables found to be associated with the distribution of this genus were used to perform OLS regressions between chemical traits and bioclimatic variables. Next, these regression models were evaluated to test whether bioclimatic traits could significantly predict compound concentrations. Our study found that in terms of compound concentration, variation is most significantly associated with adaptive environmental convergence rather than phylogenetic relationships. The best predictive model of chemical traits was the OLS regression that modeled the relationship between coumarin and precipitation in the coldest quarter. However, we also found one chemical trait was dependent on phylogenetic history and bioclimatic factors. These findings emphasize that consideration of both environmental and phylogenetic factors is essential to tease out the intricate processes in the evolution of chemical diversity in plants. These methods can benefit fields such as conservation management, ecology, and evolutionary biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2019.03.027 | DOI Listing |
J Sci Food Agric
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
Background: Relatively few studies have explored the impact of biofertilizers on the qualitative and quantitative yield of saffron despite its global agricultural and medical importance. This study aimed to evaluate the physiological and phytochemical responses of saffron to potassium (K), phosphorus (P), and iron-zinc (Fe-Zn) biofertilizers over 2 consecutive years (2022-2023). The treatments included single and combined applications of K, P, and Fe-Zn biofertilizers containing active bacterial inoculum, along with a control group, resulting in a total of eight treatments.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Floriculture Lab, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, (CSIR-IHBT), Palampur, H.P., 176061, India.
Everlastin1 and Everlastin2, potent inhibitors of EPH1, were identified through a wheat cell-free chemical-screening system. This innovative platform enables the development of small molecules that target 'undruggable' transcription factors. By specifically targeting the EPH1 pathway, these inhibitors delay petal senescence, extending the longevity and quality of ornamental flowers.
View Article and Find Full Text PDFNat Commun
December 2024
Living Systems Institute, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
The radical pair mechanism accounts for the magnetic field sensitivity of a large class of chemical reactions and is hypothesised to underpin numerous magnetosensitive traits in biology, including the avian compass. Traditionally, magnetic field sensitivity in this mechanism is attributed to radical pairs with weakly interacting, well-separated electrons; closely bound pairs were considered unresponsive to weak fields due to arrested spin dynamics. In this study, we challenge this view by examining the FAD-superoxide radical pair within cryptochrome, a protein hypothesised to function as a biological magnetosensor.
View Article and Find Full Text PDFHeliyon
December 2024
Soil Science Division, Bangaldesh Wheat and Maize Research Institute, Nashipur, Dinajpur, 5200, Bangladesh.
Heat shock, a transient exposure to high temperatures, is a substantial hazard to rice ( L.) production and sustainability. The objective of this review paper is to summarize the impact of heat shock on rice and explore approaches to mitigate its adverse effects to achieve sustainable production.
View Article and Find Full Text PDFFront Microbiol
December 2024
Division of Soil and Environmental Biotechnology, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.
Introduction: Rice, particularly Basmati rice, holds significant global importance as a staple food. The indiscriminate use of phosphate-based fertilizers during rice production has led to high residual levels of these chemicals in soil, impacting soil health and fertility. This study aimed to address this challenge by investigating the potential of phosphate solubilizing bacteria (PSB) in improving soil fertility and boosting the growth of Basmati rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!