The formation of amyloid aggregates is the hallmark of systemic and neurodegenerative diseases, also known as amyloidosis. Many proteins have been found to aggregate into amyloid-like fibrils and thus process is recognized as general tendency of polypeptides. Inhibition of protein aggregation and fibril formation is thus one of the important strategies in the prevention and treatment of such disease. There is a growing interest of identification of small molecules mainly natural compounds that can prevent or delay amyloid fibril formation. In this work, we report the effect of various compounds from different groups on the amyloid fibrillation of hen egg white lysozyme, a model protein for amyloid formation. Herein, a range of biophysical techniques have been employed in order to establish a systematic approach to study the effect of candidate inhibitors on amyloid aggregation. Results demonstrated that the strategy used show that the different techniques are complimentary in order to elucidate a complete in vitro picture of the effect of the used compounds on HEWL aggregation. Moreover, compared to the data obtained by other groups for the inhibition of lysozyme fibril formation, this work provides new insights into the structural changes (local, secondary, oligomeric, fibrillar structures) undergone by HEWL during aggregation in the presence and absence of inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.05.048 | DOI Listing |
Heart Rhythm
January 2025
Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China. Electronic address:
JACC Cardiovasc Imaging
January 2025
National Amyloidosis Centre, University College London, Royal Free Campus, Rowland Hill Street, London, United Kingdom.
Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinic of Nuclear Medicine Central University Emergency Military Hospital "Dr Carol Davila", 10825 Bucharest, Romania.
Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!