Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Obesity is a complex disorder of excessive adiposity, and is associated with adverse health effects such as cardiometabolic complications, which are to a large extent attributable to dysfunctional white adipose tissue. Adipose tissue dysfunction is characterized by adipocyte hypertrophy, impaired adipokine secretion, a chronic low-grade inflammatory status, hormonal resistance and altered metabolic responses, together contributing to insulin resistance and related chronic diseases. Adipose tissue hypoxia, defined as a relative oxygen deficit, in obesity has been proposed as a potential contributor to adipose tissue dysfunction, but studies in humans have yielded conflicting results. Here, we will review the role of adipose tissue oxygenation in the pathophysiology of obesity-related complications, with a specific focus on human studies. We will provide an overview of the determinants of adipose tissue oxygenation, as well as the role of adipose tissue oxygenation in glucose homeostasis, lipid metabolism and inflammation. Finally, we will discuss the putative effects of physiological and experimental hypoxia on adipose tissue biology and whole-body metabolism in humans. We conclude that several lines of evidence suggest that alteration of adipose tissue oxygenation may impact metabolic homeostasis, thereby providing a novel strategy to combat chronic metabolic diseases in obese humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916558 | PMC |
http://dx.doi.org/10.1111/apha.13298 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!