Many long-lived animals do not appear to show classic signs of aging, perhaps because they show negligible senescence until dying from "catastrophic" mortality. Muscle senescence is seldom examined in wild animals, yet decline in muscle function is one of the first signs of aging in many lab animals and humans. Seabirds are an excellent study system for physiological implications of aging because they are long-lived animals that actively forage and reproduce in the wild. Here, we examined linkages between pectoralis muscle fiber structure and age in black-legged kittiwakes (Rissa tridactyla). Pectoralis muscle is the largest organ complex in birds, and responsible for flight and shivering. We obtained and fixed biopsies from wild black-legged kittiwakes of known age. We then measured muscle fiber diameter, myonuclear domain and capillaries per fiber area among birds of differing ages. All muscle parameters were independent of age. Number of nuclei per mm of fiber showed a positive correlation with muscle fiber cross-sectional area, and myonuclear domain increased with muscle fiber diameter. Thus, as muscle fibers increased in size, they may not have recruited satellite cells, increasing the protein turnover load per nuclei. We conclude that senescence in a long-lived bird with an active lifestyle, does not entail mammalian-like changes in muscle structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.21001 | DOI Listing |
Front Physiol
December 2024
Raw Materials and Optimalization, Nofima AS, Ås, Norway.
Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Biology, Western University, London, Ontario, Canada.
The pectoralis muscle in birds is important for flight and thermogenesis. In migratory songbirds this muscle exhibits seasonal flexibility in size, but whether this flexibility reflects changes in muscle fiber type has not been well documented. We investigated how seasonal changes in photoperiod affected pectoralis muscle fiber type and metabolic enzymes, comparing among three closely-related sparrow species: two seasonal migrants and one year-round, temperate climate resident.
View Article and Find Full Text PDFJ Texture Stud
February 2025
Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
The increasing demand for protein-rich, plant-based foods has driven the development of meat analogs that closely mimic the texture and mouthfeel of animal meat. While plant-based fibrils and electrospun silk fibroin fibers have been explored for texture enhancement and scaffolding in both meat analogs and cell-based meats, the use of wet-spun fibroin protein fibers as a food ingredient remains underexplored. This study investigates the potential of wet-spun recombinant fibroin fibers to enhance the textural properties of meat analogs.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430000, China.
Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil.
Introduction: Excess weight during pregnancy is a condition that can affect both mother and fetus, through the maternal-fetal interface, which is constituted by the placenta and umbilical cord. The umbilical vein is responsible for transporting oxygen and nutrients to the fetus, and its proper functioning depends on the integrity of its structure. The remodeling of the umbilical vein represents one of the causes of inadequate transport of nutrients to the fetus, being potentially harmful.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!