Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate.

J Interv Card Electrophysiol

Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor North Wing, St. Thomas' Hospital, 249 Westminster Bridge Road, London, SE1 7EH, UK.

Published: December 2019

Low atrial endocardial bipolar voltage, measured during catheter ablation for atrial fibrillation (AF), is a commonly used surrogate marker for the presence of atrial fibrosis. Low voltage shows many useful associations with clinical outcomes, comorbidities and has links to trigger sites for AF. Several contemporary trials have shown promise in targeting low voltage areas as the substrate for AF ablation; however, the results have been mixed. In order to understand these results, a thorough understanding of voltage mapping techniques, the relationship between low voltage and the pathophysiology of AF, as well as the inherent limitations in voltage measurement are needed. Two key questions must be answered in order to optimally apply voltage mapping as the road map for ablation. First, are the inherent limitations of voltage mapping small enough as to be ignored when targeting specific tissue based on voltage? Second, can conventional criteria, using a binary threshold for voltage amplitude, truly define the extent of the atrial fibrotic substrate? Here, we review the latest clinical evidence with regard to voltage-based ablation procedures before analysing the utility and limitations of voltage mapping. Finally, we discuss omnipole mapping and dynamic voltage attenuation as two possible approaches to resolving these issues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900285PMC
http://dx.doi.org/10.1007/s10840-019-00537-8DOI Listing

Publication Analysis

Top Keywords

voltage mapping
20
voltage
12
low voltage
12
limitations voltage
12
atrial fibrillation
8
inherent limitations
8
mapping
6
atrial
5
left atrial
4
atrial voltage
4

Similar Publications

Background: Areas of conduction disorders play an important role in both initiation and perpetuation of AF and can be recognized by specific changes in unipolar potential morphology. For example, EGM fractionation may be caused by asynchronous activation of adjacent cardiomyocytes because of structural barriers such as fibrotic strands. However, it is unknown whether there are sex differences in unipolar potential morphology.

View Article and Find Full Text PDF

Whole-Heart Histological and CMR Validation of Electroanatomic Mapping by Multielectrode Catheters in an Ovine Model.

JACC Clin Electrophysiol

January 2025

Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia; Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia. Electronic address:

Background: Accurate electroanatomic mapping is critical for identifying scar and the long-term success of ventricular tachycardia ablation.

Objectives: This study sought to determine the accuracy of multielectrode mapping (MEM) catheters to identify scar on cardiac magnetic resonance (CMR) and histopathology.

Methods: In an ovine model of myocardial infarction, we examined the effect of electrode size, spacing, and mapping rhythm on scar identification compared to CMR and histopathology using 5 multielectrode mapping catheters.

View Article and Find Full Text PDF

Background: Slow activation areas, characterized by decreased conduction velocities in the left atrium, are commonly observed in patients with persistent atrial fibrillation (PeAF). However, it remains unclear whether the ablation of slow activation areas combined with pulmonary vein isolation (PVI) improves clinical outcomes in these patients.

Methods: This single-center retrospective study included patients who underwent catheter ablation for PeAF.

View Article and Find Full Text PDF

A tailored substrate-based approach using focal pulsed field catheter ablation in patients with atrial fibrillation and advanced atrial substrate: Procedural data and 6-months success rates.

Heart Rhythm

January 2025

Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Background: Focal pulsed-field ablation (F-PFA) integrated in electroanatomical mapping (EAM) systems allows tailored lesion sets in patients with atrial fibrillation (AF).

Objective: To determine feasibility, safety and 6-months outcome of F-PFA for a tailored substrate-based catheter ablation (CA) approach in patients with AF and advanced atrial substrate.

Methods: Consecutive patients with AF and advanced atrial substrate treated by a F-PFA system (Cardiofocus) through contact-force sensing catheters integrated in EAM systems were prospectively enrolled.

View Article and Find Full Text PDF

Background: Atypical atrial tachycardia (AT) is a commonly encountered rhythm disorder especially in patients with underlying atrial scar. Peak frequency (PF) annotation of bipolar electrograms is a novel method, which mainly aims to discriminate near-field and far-field signals.

Objective: To evaluate the association between PF annotation of low-voltage zones (LVZ) and deceleration zones (DZ) during sinus / paced rhythm and their role to predict the critical isthmus (CI) and termination sites of atypical ATs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!