Existing literature on sensory deprivation suggests that short-lasting periods of dark adaptation (DA) can cause changes in visual cortex excitability. DA cortical effects have previously been assessed through phosphene perception, i.e., the ability to report visual sensations when a transcranial magnetic stimulation (TMS) pulse is delivered over the visual cortex. However, phosphenes represent an indirect measure of visual cortical excitability which relies on a subjective report. Here, we aimed at overcoming this limitation by assessing visual cortical excitability by combining subjective (i.e., TMS-induced phosphenes) and objective (i.e., TMS-evoked potentials - TEPs) measurements in a TMS-EEG protocol after 30 min of DA. DA effects were compared to a control condition, entailing 30 min of controlled light exposure. TMS was applied at 11 intensities in order to estimate the psychometric function of phosphene report and explore the relationship between TEPs and TMS intensity. Compared to light adaptation, after DA the slope of the psychometric function was significantly steeper, and the amplitude of a TEP component (P60) was lower, only for high TMS intensities. The perceptual threshold was not affected by DA. These results support the idea that DA leads to a change in the excitability of the visual cortex, accompanied by a behavioral modification of visual perception. Furthermore, this study provides a first valuable description of the relationship between TMS intensity and visual TEPs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10548-019-00715-xDOI Listing

Publication Analysis

Top Keywords

visual cortex
12
dark adaptation
8
visual
8
visual cortical
8
cortical excitability
8
psychometric function
8
tms intensity
8
tms
5
perceptual physiological
4
physiological consequences
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!