Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian .

J Biol Chem

the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and

Published: June 2019

PIWI proteins are key regulators of germline and somatic stem cells throughout different evolutionary lineages. However, how PIWI proteins themselves are regulated remains largely unknown. To identify candidate proteins that interact with PIWI proteins and regulate their stability, here we established a yeast two-hybrid (Y2H) assay in the planarian species We show that DNAJA1, a heat shock protein 40 family member, interacts with the PIWI protein SMEDWI-2, as validated by the Y2H screen and co-immunoprecipitation assays. We found that is enriched in planarian adult stem cells, the nervous system, and intestinal tissues. -knockdown abolished planarian regeneration and homeostasis, compromised stem cell maintenance and PIWI-interacting RNA (piRNA) biogenesis, and deregulated SMEDWI-1/2 target genes. Mechanistically, we observed that DNAJA1 is required for the stability of SMEDWI-1 and SMEDWI-2 proteins. Furthermore, we noted that human DNAJA1 binds to Piwi-like RNA-mediated gene silencing 1 (PIWIL1) and is required for PIWIL1 stability in human gastric cancer cells. In summary, our results reveal not only an evolutionarily conserved functional link between PIWI and DNAJA1 that is essential for PIWI protein stability and piRNA biogenesis, but also an important role of DNAJA1 in the control of proteins involved in stem cell regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597837PMC
http://dx.doi.org/10.1074/jbc.RA118.004445DOI Listing

Publication Analysis

Top Keywords

piwi proteins
16
heat shock
8
shock protein
8
regeneration homeostasis
8
stem cells
8
piwi protein
8
stem cell
8
pirna biogenesis
8
piwi
7
proteins
7

Similar Publications

Drosophila Modulo is Essential for Transposon Silencing and Developmental Robustness.

J Biol Chem

January 2025

Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA. Electronic address:

Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3).

View Article and Find Full Text PDF

Argonaute 2 regulates nuclear DNA damage, repair, and phenotypes in Arabidopsis under genotoxic stress.

Plant Physiol Biochem

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea.

Argonaute (AGO) proteins are involved in gene expression and genome integrity during biotic and abiotic stress responses. AGO2 mediates double-strand break (DSB) repair in DNA damage response (DDR) induced by genotoxic stress. However, beyond DSB repair, the involvement of AGO proteins in DDR remains unknown.

View Article and Find Full Text PDF

The piR-31115-PIWIL4 complex promotes the migration of the triple-negative breast cancer cell lineMDA-MB-231 by suppressing HSP90AA1 degradation.

Gene

January 2025

College of Medical Technology, Zibo Vocational Institute, Zibo, Shandong Province 255300, China; Center of Translational Medicine, Zibo Central Hospital, Zibo, Shandong Province 255036, China. Electronic address:

Background: P-element-induced wimpy testis (PIWI) proteins bind to PIWI-interactingRNAs (piRNAs) to form the piRNA/PIWI complex, which affects protein regulation. PIWIL4, a member of the PIWI family, has been demonstrated in recent studies to promote the migration of triple-negative breast cancer (TNBC) cell line MDA-MB-231. However, the molecular mechanisms underlying cell migration remain obscure.

View Article and Find Full Text PDF

piR-26441 inhibits mitochondrial oxidative phosphorylation and tumorigenesis in ovarian cancer through m6A modification by interacting with YTHDC1.

Cell Death Dis

January 2025

Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells.

View Article and Find Full Text PDF

Unveiling the impact of shrimp piRNAs on WSSV infection and immune modulation.

Fish Shellfish Immunol

January 2025

Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. Electronic address:

Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that play a crucial role in gene regulation and immune defense. This study investigates their function in Penaeus vannamei shrimp during White Spot Syndrome Virus (WSSV) infection. Analysis of small RNA libraries from WSSV-infected shrimp hemocytes identified 82,788 piRNA homologs, with 138 showing altered expression during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!