Dysfunction of human phenylalanine hydroxylase (hPAH, EC 1.14.16.1) is the primary cause of phenylketonuria, the most common inborn error of amino acid metabolism. The dynamic domain rearrangements of this multimeric protein have thwarted structural study of the full-length form for decades, until now. In this study, a tractable C29S variant of hPAH (C29S) yielded a 3.06 Å resolution crystal structure of the tetrameric resting-state conformation. We used size-exclusion chromatography in line with small-angle X-ray scattering (SEC-SAXS) to analyze the full-length hPAH solution structure both in the presence and absence of Phe, which serves as both substrate and allosteric activators. Allosteric Phe binding favors accumulation of an activated PAH tetramer conformation, which is biophysically distinct in solution. Protein characterization with enzyme kinetics and intrinsic fluorescence revealed that the C29S variant and hPAH are otherwise equivalent in their response to Phe, further supported by their behavior on various chromatography resins and by analytical ultracentrifugation. Modeling of resting-state and activated forms of C29S against SAXS data with available structural data created and evaluated several new models for the transition between the architecturally distinct conformations of PAH and highlighted unique intra- and inter-subunit interactions. Three best-fitting alternative models all placed the allosteric Phe-binding module 8-10 Å farther from the tetramer center than do all previous models. The structural insights into allosteric activation of hPAH reported here may help inform ongoing efforts to treat phenylketonuria with novel therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664189PMC
http://dx.doi.org/10.1074/jbc.RA119.008294DOI Listing

Publication Analysis

Top Keywords

human phenylalanine
8
phenylalanine hydroxylase
8
c29s variant
8
variant hpah
8
hpah
5
biophysical characterization
4
characterization full-length
4
full-length human
4
hydroxylase deeper
4
deeper understanding
4

Similar Publications

One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6.

View Article and Find Full Text PDF

Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin.

View Article and Find Full Text PDF

Satisfaction and Preferences for Infusion Therapies in Advanced Parkinson's Disease-Patient Perspective.

Medicina (Kaunas)

December 2024

Department of Neurology, Faculty of Medical Sciences in Katowice, University Clinical Centre Prof K. Gibinski, Medical University of Silesia, 14 Medykow St. 40-752 Katowice, Poland.

The rapid growth of the number of advanced Parkinson's disease (PD) patients has caused a significant increase in the use of device-aided therapies (DATs), including levodopa-carbidopa intestinal gel (LCIG) and continuous subcutaneous apomorphine infusion (CSAI). The objective of this study was to evaluate patients' satisfaction and the factors influencing preferences for CSAI and LCIG. The research focused on individuals diagnosed with advanced PD undergoing DAT at the Neurology Department of the University Hospital in Katowice.

View Article and Find Full Text PDF

Nateglinide: A comprehensive profile.

Profiles Drug Subst Excip Relat Methodol

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia. Electronic address:

Nateglinide belongs to the meglitinide class of insulin secretagogues. It is used as an oral hypoglycemic agent for the treatment of type 2 diabetes mellitus. Nateglinide is an amino acid derivative of D-phenylalanine that binds to the ATP-sensitive potassium channels in pancreatic beta cells and stimulates the secretion of insulin.

View Article and Find Full Text PDF

Purpose: A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM).

Methods: Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!