Utilization of agro-industrial waste for production of Transglutaminase from Streptomyces mobaraensis.

Bioresour Technol

Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India. Electronic address:

Published: September 2019

This work studied the production of Transglutaminase (TGase) using wheat bran as carbon source. The medium components and culture conditions were optimized by statistical Box-Behnken response surface methodology. The release of active Transglutaminase was enhanced by adding (i) protease to remove pro-region to make inactive enzyme to active form, (ii) Cetyl trimethyl ammonium bromide (CTAB) which facilitated more secretion. Under finally optimized conditions viz. 5 g wheat bran, protease: 39.14 U, magnesium chloride (MgCl): 0.10 M, CTAB: 0.08% and inoculation size: 2% led to 4-fold (12.949 ± 0.061 IU/g) increased TGase production over that of un-optimized conditions. The application of TGase was shown to be useful in effective casein cross-linking.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121391DOI Listing

Publication Analysis

Top Keywords

production transglutaminase
8
wheat bran
8
utilization agro-industrial
4
agro-industrial waste
4
waste production
4
transglutaminase streptomyces
4
streptomyces mobaraensis
4
mobaraensis work
4
work studied
4
studied production
4

Similar Publications

The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing.

View Article and Find Full Text PDF

Micellar casein were constructed to improve the encapsulation efficiency of algae oil docosahexaenoic acid by transglutaminase-coupled phosphoserine peptide chelating with Ca.

Int J Biol Macromol

January 2025

College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China. Electronic address:

Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored.

View Article and Find Full Text PDF

Background: The escalating global prevalence of food allergies has intensified the need for hypoallergenic food products. Transglutaminase (TGase)-mediated crosslinking has garnered significant attention for its potential to reduce the allergenicity of food proteins. This study aimed to investigate the effects of TGase crosslinking on the potential allergenicity and conformational changes in a dual-protein system composed of β-lactoglobulin (β-LG) and soy protein isolate (SPI) at varying mass ratios (10:0, 7:3, 5:5, 3:7 and 0:10 (w/w)).

View Article and Find Full Text PDF

Functional analysis of key members affecting egg production in the transglutaminase gene family in chickens.

Poult Sci

January 2025

College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, 450046, China. Electronic address:

The transglutaminase (TGMs) family plays a crucial role in regulating mammalian reproduction, yet its impact on poultry reproductive traits has not been extensively studied. In this study, we identified eight members of the TGMs family in chickens and examined the contributions of genetic variations of coagulation factor XIII A chain (F13A1), transglutaminase 4 (TGM4), and LOC101749664 to selective breeding in commercial layers through genetic variation response pattern analysis. Transcriptome data from various tissues of high- and low-egg-yielding Gushi chickens revealed significant positive correlations between the mRNA expression levels of TGM4 and F13A1 genes and egg production (P < 0.

View Article and Find Full Text PDF

Background: Celiac disease (CD) is an autoimmune disease that results from the interaction of genetic, immune, and environmental factors. According to the 2020 European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) guidelines, an elimination diet (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!