This work proposes the extension of the simplified filtered Smith predictor (SFSP) for state-space systems to improve rejection of matched and unmatched unknown disturbances in LTI systems with input delay. The proposed structure is simpler than others recently proposed in the literature and can be applied to continuous-time or discrete-time systems. Furthermore, it allows improving rejection of both matched and unmatched disturbances, while also enhancing noise attenuation and robustness characteristics. Finite spectrum assignment (FSA) based implementation is used in order to guarantee the internal stability of the proposed controller. Simulation and experimental results are used to show the usefulness of the proposal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2019.04.005DOI Listing

Publication Analysis

Top Keywords

unknown disturbances
8
disturbances lti
8
lti systems
8
systems input
8
input delay
8
rejection matched
8
matched unmatched
8
simple approach
4
approach enhanced
4
enhanced rejection
4

Similar Publications

The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Radiology, miami, FL, USA.

Background: Clearance of brain toxins occurs during sleep, although the mechanism remains unknown. Previous studies implied that the intracranial aqueductal cerebrospinal fluid (CSF) oscillations are involved, but no mechanism was suggested. The rationale for focusing on the aqueductal CSF oscillations is unclear.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is an age-related neurodegenerative disorder affecting nearly 50 million individuals worldwide. Besides aging, various comorbidities can increase the risk of AD, such as asthma. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown.

View Article and Find Full Text PDF

Distinctive gut antibiotic resistome, potential health risks and underlying pathways upon cerebral ischemia-reperfusion injury.

Environ Pollut

December 2024

Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

Article Synopsis
  • Antibiotic resistance genes (ARGs) from gut microbiota pose significant health risks and can be influenced by non-antibiotic factors like disease states, particularly in cases of cerebral ischemia-reperfusion injury (I/R) which is common in stroke patients.
  • Changes in the gut antibiotic resistome during I/R show an increase in tetracycline ARGs while other types, like aminoglycoside and glycopeptide ARGs, decrease, suggesting a shift in microbial resistance profiles.
  • The study identifies specific ARG hosts and pathways influenced by I/R, highlighting the increase in multidrug resistance genes and various biosynthetic processes in gut microbiota, providing potential targets for health interventions.
View Article and Find Full Text PDF

Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor, is suspected of disturbing brain development through largely unknown cellular and molecular mechanisms. In the central nervous system, oligodendrocytes are responsible for forming myelin sheaths, which enhance the propagation of action potentials along axons. Disruption of axon myelination can have lifelong consequences, making oligodendrocyte differentiation and myelination critical stages of brain development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!