Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe the synthesis of epi-oligomycin A, a (33)-diastereomer of the antibiotic oligomycin A. The structure of (33)-oligomycin A was determined by elemental analysis, spectroscopic studies, including 1D and 2D NMR spectroscopy, and mass spectrometry. Isomerization of C33 hydroxyl group led to minor changes in the potency against , , and filamentous fungi whereas the activity against decreased by approximately 20-fold compared to oligomycin A. We observed that 33-epi-oligomycin A had the same activity on the human leukemia cell line K562 as oligomycin A but was more potent for the multidrug resistant subline K562/4. Non-malignant cells were less sensitive to both oligomycin isomers. Finally, our results pointed at the dependence of the cytotoxicity of oligomycins on oxygen supply.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14786419.2019.1608540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!