The recycled paper and board industry needs to improve the quality of their products to meet customer demands. The refining process and strength additives are commonly used to increase mechanical properties. Interfiber bonding can also be improved using cellulose nanofibers (CNF). A circular economy approach in the industrial implementation of CNF can be addressed through the in situ production of CNF using side cellulose streams of the process as raw material, avoiding transportation costs and reducing industrial wastes. Furthermore, CNF fit for use can be produced for specific industrial applications.This study evaluates the feasibility of using two types of recycled fibers, simulating the broke streams of two paper machines producing newsprint and liner for cartonboard, to produce in situ CNF for direct application on the original pulps, old newsprint (ONP), and old corrugated container (OCC), and to reinforce the final products. The CNF were obtained by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-mediated oxidation and homogenization at 600 bar. Handsheets were prepared with disintegrated recycled pulp and different amounts of CNF using a conventional three-component retention system. Results show that 3 wt.% of CNF produced with 10 mmol of NaClO per gram of dry pulp improve tensile index of ONP ~30%. For OCC, the same treatment and CNF dose increase tensile index above 60%. In both cases, CNF cause a deterioration of drainage, but this effect is effectively counteracted by optimising the retention system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539324 | PMC |
http://dx.doi.org/10.3390/molecules24091800 | DOI Listing |
Polymers (Basel)
December 2024
Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey.
In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.
View Article and Find Full Text PDFMolecules
December 2024
College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.
View Article and Find Full Text PDFMolecules
December 2024
School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China.
Nickel disulfide (NiS) nanoparticles are encapsulated within nitrogen and sulfur co-doped carbon nanosheets, which are grown onto carbon nanofibers to form an array structure (NiS/C@CNF), resulting in a self-supporting film. This encapsulated structure not only prevents the agglomeration of NiS nanoparticles, but also memorably buffers its volume changes during charge/discharge cycles, thereby maintaining structural integrity. The nitrogen and sulfur co-doping enhances electronic conductivity and facilitates the faster ion transport of the carbon backbone, improving the low conductivity of the NiS/C@CNF anodes.
View Article and Find Full Text PDFBiofabrication
January 2025
Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, Center of Translational Oral Research (TOR), Bergen, Bergen, 5020, NORWAY.
A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
Hydrogel-based sensors have been widely studied for perceiving the environment. However, the simplest type of resistive sensors still lacks sensitivity to localized strain and other extractable data. Enhancing their sensitivity and expanding their functionality to perceive multiple stimuli simultaneously are highly beneficial yet require optimal material design and proper testing methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!