In this paper, the Langevin dynamics simulation method is used to study magnetic interactions between a pair of multicore magnetic nanoparticles subjected to a uniform magnetic field. Multicore nanoparticles are modelled as spherical rigid clusters of single-domain superparamagnetic cores coupled via dipole-dipole interactions. It is shown that the magnetic force between two well-separated clusters in a strong applied field can be accurately described within the induced point-dipole approximation. However, this approximation also assumes that there are no interactions between clusters in the zero-field limit. On the contrary, simulations indicate the existence of a relatively small attractive magnetic force between clusters, even in the absence of an applied field. It is shown that this force is a direct superparamagnetic analog of the van der Waals interaction between a pair of dielectric spheres.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566794 | PMC |
http://dx.doi.org/10.3390/nano9050718 | DOI Listing |
Phys Chem Chem Phys
January 2025
Ural Federal University, Ekaterinburg, Russia.
This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.
View Article and Find Full Text PDFScience
October 2024
Max Planck Institute for Microstructure Physics, 06120 Halle (Saale), Germany.
The manipulation and detection of mobile domain walls in nanoscopic magnetic wires underlies the development of multibit memories. The studies of such domain walls have focused on macroscopic wires that allow for optical detection by using magneto-optic effects. In this study, we demonstrated the electrical tracking with a spatial resolution of better than 40 nm of multiple mobile domain walls in nanoscopic racetracks, using a set of anomalous Hall detectors integrated into the racetracks.
View Article and Find Full Text PDFACS Mater Au
September 2024
Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France.
Multicore magnetic nanoparticles (MNPs), comprising iron oxide cores embedded in a sugar or starch matrix, are a class of nanomaterials with promising magnetic heating properties. Their internal structure, and particularly the strength of the internal core-core magnetic interactions, are believed to determine the functional properties, but there have been few detailed studies on this to date. We report here on an interlaboratory and multimodality transmission electron microscopy (TEM) and magnetic study of a high-performance MNP material (supplied by Resonant Circuits Limited, RCL) that is currently being used in a clinical study for the treatment of pancreatic cancer.
View Article and Find Full Text PDFChemphyschem
November 2024
University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France.
Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al., presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Institute of Physics, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil.
Cell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!