Zero-Field and Field-Induced Interactions between Multicore Magnetic Nanoparticles.

Nanomaterials (Basel)

Institute of Continuous Media Mechanics UB RAS, Perm Federal Research Center UB RAS, Perm 614013, Russia.

Published: May 2019

In this paper, the Langevin dynamics simulation method is used to study magnetic interactions between a pair of multicore magnetic nanoparticles subjected to a uniform magnetic field. Multicore nanoparticles are modelled as spherical rigid clusters of single-domain superparamagnetic cores coupled via dipole-dipole interactions. It is shown that the magnetic force between two well-separated clusters in a strong applied field can be accurately described within the induced point-dipole approximation. However, this approximation also assumes that there are no interactions between clusters in the zero-field limit. On the contrary, simulations indicate the existence of a relatively small attractive magnetic force between clusters, even in the absence of an applied field. It is shown that this force is a direct superparamagnetic analog of the van der Waals interaction between a pair of dielectric spheres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566794PMC
http://dx.doi.org/10.3390/nano9050718DOI Listing

Publication Analysis

Top Keywords

multicore magnetic
8
magnetic nanoparticles
8
magnetic force
8
applied field
8
magnetic
6
zero-field field-induced
4
interactions
4
field-induced interactions
4
interactions multicore
4
nanoparticles paper
4

Similar Publications

This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.

View Article and Find Full Text PDF

The manipulation and detection of mobile domain walls in nanoscopic magnetic wires underlies the development of multibit memories. The studies of such domain walls have focused on macroscopic wires that allow for optical detection by using magneto-optic effects. In this study, we demonstrated the electrical tracking with a spatial resolution of better than 40 nm of multiple mobile domain walls in nanoscopic racetracks, using a set of anomalous Hall detectors integrated into the racetracks.

View Article and Find Full Text PDF

Multicore magnetic nanoparticles (MNPs), comprising iron oxide cores embedded in a sugar or starch matrix, are a class of nanomaterials with promising magnetic heating properties. Their internal structure, and particularly the strength of the internal core-core magnetic interactions, are believed to determine the functional properties, but there have been few detailed studies on this to date. We report here on an interlaboratory and multimodality transmission electron microscopy (TEM) and magnetic study of a high-performance MNP material (supplied by Resonant Circuits Limited, RCL) that is currently being used in a clinical study for the treatment of pancreatic cancer.

View Article and Find Full Text PDF

Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al., presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer.

View Article and Find Full Text PDF

Cell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!