Sildenafil (SD) and its related compounds are the most common adulterants found in herbal preparations used as sexual enhancer or man's virility products. However, the abuse of SD threatens human health such as through headache, back pain, rhinitis, etc. Therefore, it is important to accurately detect the presence of SD in alcoholic beverages. In this study, the Opto Trace Raman 202 (OTR 202) was used as a surface-enhanced Raman spectroscopy (SERS) active colloids to detect SD. The results demonstrated that the limit of detection (LOD) of SD was found to be as low as 0.1 mg/L. Moreover, 1235, 1401, 1530, and 1584 cm could be qualitatively determined as SD characteristic peaks. In a practical application, SD in cocktail could be easily detected using SERS based on OTR 202. Also, there was a good linear correlation between the intensity of Raman peaks at 1235, 1401, 1530, and 1584 cm and the logarithm of SD concentration in cocktail was in the range of 0.1-10 mg/L (0.9822 < R < 0.9860). The relative standard deviation (RSD) was less than 12.7% and the recovery ranged from 93.0%-105.8%. Moreover, the original 500-1700 cm SERS spectra were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS spectra and SD content in cocktail and the highest determination coefficient (Rp) reached 0.9856. In summary, the SD in cocktail could be rapidly and quantitatively determined by SERS, which was beneficial to provide a rapid and accurate scheme for the detection of SD in alcoholic beverages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539339PMC
http://dx.doi.org/10.3390/molecules24091790DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
8
alcoholic beverages
8
otr 202
8
1235 1401
8
1401 1530
8
1530 1584
8
sers spectra
8
cocktail
5
sers
5
rapid quantitative
4

Similar Publications

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, the cancer disease state using high-dimensional datasets with minimal preprocessing.

View Article and Find Full Text PDF

This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.

View Article and Find Full Text PDF

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!